Skip to main content
Top

2021 | OriginalPaper | Chapter

The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method

Authors : Christopher G. Robertson, Radek Stoček, William V. Mars

Published in: Fatigue Crack Growth in Rubber Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Below a limiting value of tearing energy called the intrinsic strength or fatigue threshold (T0), cracks will not grow in rubber due to fatigue; hence, this material characteristic is important to understand from both fundamental and practical perspectives. We summarize key aspects of the fatigue threshold, including the Lake-Thomas molecular interpretation of T0 in terms of fracture of polymer network chains in crosslinked elastomers. The various testing approaches for quantifying T0 are also discussed, with a focus on the classic Lake-Yeoh cutting method which was recently revived by the introduction of a commercial testing instrument that applies this procedure, the Intrinsic Strength Analyser (ISA). A validation of the cutting method is also given by demonstrating that a 2-h test on the ISA yields a value of T0 that is essentially identical to the T0 from near-threshold fatigue crack growth (FCG) measurements that require 7.5 months of continuous testing. Compound formulation effects – polymer type, crosslink density, type and amount of reinforcing fillers, and addition of oils/plasticizers – are examined based on the limited published research in this area and our new results. At the end, some insights are offered into using the fatigue threshold to develop highly durable rubber products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhowmick AK (1988) Threshold fracture of elastomers. J Macromol Sci Part C Polym Rev 28:339–370 Bhowmick AK (1988) Threshold fracture of elastomers. J Macromol Sci Part C Polym Rev 28:339–370
2.
go back to reference Mars WV, Fatemi A (2004) Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem Technol 77:391–412 Mars WV, Fatemi A (2004) Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem Technol 77:391–412
3.
go back to reference Harbour RJ, Fatemi A, Mars WV (2007) The effect of a dwell period on fatigue crack growth rates in filled SBR and NR. Rubber Chem Technol 80:838–853 Harbour RJ, Fatemi A, Mars WV (2007) The effect of a dwell period on fatigue crack growth rates in filled SBR and NR. Rubber Chem Technol 80:838–853
4.
go back to reference Stadlbauer F, Koch T, Archodoulaki V-M, Planitzer F, Fidi W, Holzner A (2013) Influence of experimental parameters on fatigue crack growth and heat build-up in rubber. Materials 6:5502–5516PubMedPubMedCentral Stadlbauer F, Koch T, Archodoulaki V-M, Planitzer F, Fidi W, Holzner A (2013) Influence of experimental parameters on fatigue crack growth and heat build-up in rubber. Materials 6:5502–5516PubMedPubMedCentral
5.
go back to reference Stoček R, Horst T, Reincke K (2016) Tearing energy as fracture mechanical quantity for elastomers. Adv Polym Sci 275:361–398 Stoček R, Horst T, Reincke K (2016) Tearing energy as fracture mechanical quantity for elastomers. Adv Polym Sci 275:361–398
6.
go back to reference Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9:1233–1251 Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9:1233–1251
7.
go back to reference Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proc R Soc Lond A 300:108–119 Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proc R Soc Lond A 300:108–119
8.
go back to reference Sakulkaew K, Thomas AG, Busfield JJC (2013) The effect of temperature on the tearing of rubber. Polym Test 32:86–93 Sakulkaew K, Thomas AG, Busfield JJC (2013) The effect of temperature on the tearing of rubber. Polym Test 32:86–93
9.
go back to reference Tsunoda K, Busfield JJC, Davies CKL, Thomas AG (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35:5187–5198 Tsunoda K, Busfield JJC, Davies CKL, Thomas AG (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35:5187–5198
10.
go back to reference Bhattacharyya S, Lodha V, Dasgupta S, Mukhopadhyay R, Guha A, Sarkar P, Saha T, Bhowmick AK (2019) Influence of highly dispersible silica filler on the physical properties, tearing energy, and abrasion resistance of tire tread compound. J Appl Polym Sci 136:47560 Bhattacharyya S, Lodha V, Dasgupta S, Mukhopadhyay R, Guha A, Sarkar P, Saha T, Bhowmick AK (2019) Influence of highly dispersible silica filler on the physical properties, tearing energy, and abrasion resistance of tire tread compound. J Appl Polym Sci 136:47560
11.
go back to reference Andrews EH (1963) Rupture propagation in hysteresial materials: stress at a notch. J Mech Phys Solids 11:231–242 Andrews EH (1963) Rupture propagation in hysteresial materials: stress at a notch. J Mech Phys Solids 11:231–242
12.
go back to reference Stoček R (2021) Some revision of fatigue crack growth characteristics of rubber. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin Stoček R (2021) Some revision of fatigue crack growth characteristics of rubber. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin
13.
go back to reference Zhang E, Bai R, Morelle XP, Suo Z (2018) Fatigue fracture of nearly elastic hydrogels. Soft Matter 14:3563–3571PubMed Zhang E, Bai R, Morelle XP, Suo Z (2018) Fatigue fracture of nearly elastic hydrogels. Soft Matter 14:3563–3571PubMed
14.
go back to reference Legorju-Jago K, Bathias C (2002) Fatigue initiation and propagation in natural and synthetic rubbers. Int J Fatigue 24:85–92 Legorju-Jago K, Bathias C (2002) Fatigue initiation and propagation in natural and synthetic rubbers. Int J Fatigue 24:85–92
15.
go back to reference Gent AN, Tobias RH (1982) Threshold tear strength of elastomers. J Polym Sci Polym Phys Ed 20:2051–2058 Gent AN, Tobias RH (1982) Threshold tear strength of elastomers. J Polym Sci Polym Phys Ed 20:2051–2058
16.
go back to reference Bhowmick AK, Neogi C, Basu SP (1990) Threshold tear strength of carbon black filled rubber Vulcanizates. J Appl Polym Sci 41:917–928 Bhowmick AK, Neogi C, Basu SP (1990) Threshold tear strength of carbon black filled rubber Vulcanizates. J Appl Polym Sci 41:917–928
17.
go back to reference Mazich KA, Samus MA, Smith CA, Rossi G (1991) Threshold fracture of lightly crosslinked networks. Macromolecules 24:2766–2769 Mazich KA, Samus MA, Smith CA, Rossi G (1991) Threshold fracture of lightly crosslinked networks. Macromolecules 24:2766–2769
18.
go back to reference Lake GJ, Yeoh OH (1978) Measurement of rubber cutting resistance in the absence of friction. Int J Fract 14:509–526 Lake GJ, Yeoh OH (1978) Measurement of rubber cutting resistance in the absence of friction. Int J Fract 14:509–526
19.
go back to reference Robertson CG, Stoček R, Kipscholl C, Mars WV (2019) Characterizing the intrinsic strength (fatigue threshold) of natural rubber/butadiene rubber blends. Tire Sci Technol 47:292–307 Robertson CG, Stoček R, Kipscholl C, Mars WV (2019) Characterizing the intrinsic strength (fatigue threshold) of natural rubber/butadiene rubber blends. Tire Sci Technol 47:292–307
20.
go back to reference Mars WV, Robertson CG, Stoček R, Kipscholl C (2019) Why cutting strength is an indicator of fatigue threshold. In: Huneau B, Le Cam J-B, Marco Y, Verron E (eds) Constitutive models for rubber XI. CRC Press, Taylor & Francis Group, London, pp 351–356 Mars WV, Robertson CG, Stoček R, Kipscholl C (2019) Why cutting strength is an indicator of fatigue threshold. In: Huneau B, Le Cam J-B, Marco Y, Verron E (eds) Constitutive models for rubber XI. CRC Press, Taylor & Francis Group, London, pp 351–356
22.
go back to reference Robertson CG, Stoček R, Kipscholl R, Mars WV (2019) Characterizing durability of rubber for tires. Tire Technol Int Ann Rev:78–82 Robertson CG, Stoček R, Kipscholl R, Mars WV (2019) Characterizing durability of rubber for tires. Tire Technol Int Ann Rev:78–82
23.
go back to reference Robertson, C.G., Goossens, J.R., Mars, W.V. (2019) Using the laboratory cutting method for predicting long-term durability of elastomers. In: Paper D15, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct 10–12, 2019 Robertson, C.G., Goossens, J.R., Mars, W.V. (2019) Using the laboratory cutting method for predicting long-term durability of elastomers. In: Paper D15, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct 10–12, 2019
24.
go back to reference Isitman N, Stoček R, Robertson CG (2020) Influences of compounding attributes on intrinsic strength and tearing behavior of model tread rubber compounds. In: Paper scheduled to be presented at the 197th technical meeting of the rubber division, ACS, Independence, OH, April 28–30, 2020 (Presentation slides made available online due to meeting cancellation for COVID-19 precaution) Isitman N, Stoček R, Robertson CG (2020) Influences of compounding attributes on intrinsic strength and tearing behavior of model tread rubber compounds. In: Paper scheduled to be presented at the 197th technical meeting of the rubber division, ACS, Independence, OH, April 28–30, 2020 (Presentation slides made available online due to meeting cancellation for COVID-19 precaution)
25.
go back to reference Hosseini SM, Razzaghi-Kashani M (2018) Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter 14:9194–9208PubMed Hosseini SM, Razzaghi-Kashani M (2018) Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter 14:9194–9208PubMed
26.
go back to reference Blokh GA, Melamed CL (1961) The interaction of carbon black with sulfur, MBT and TMTD in vulcanization. Rubber Chem Technol 34:588–599 Blokh GA, Melamed CL (1961) The interaction of carbon black with sulfur, MBT and TMTD in vulcanization. Rubber Chem Technol 34:588–599
27.
go back to reference Bhowmick AK, Gent AN, Pulford CTR (1983) Tear strength of elastomers under threshold conditions. Rubber Chem Technol 56:226–232 Bhowmick AK, Gent AN, Pulford CTR (1983) Tear strength of elastomers under threshold conditions. Rubber Chem Technol 56:226–232
28.
go back to reference Gent AN, Lai S-M, Nah C, Wang C (1994) Viscoelastic effects in cutting and tearing of rubber. Rubber Chem Technol 67:610–618 Gent AN, Lai S-M, Nah C, Wang C (1994) Viscoelastic effects in cutting and tearing of rubber. Rubber Chem Technol 67:610–618
29.
go back to reference Rader CP (2001) Chapter 7. Vulcanization of rubber – A. sulfur and non-peroxides. In: Baranwal KC, Stephens HL (eds) Basic elastomer technology. The rubber division. ACS, Akron, pp 165–190 Rader CP (2001) Chapter 7. Vulcanization of rubber – A. sulfur and non-peroxides. In: Baranwal KC, Stephens HL (eds) Basic elastomer technology. The rubber division. ACS, Akron, pp 165–190
30.
go back to reference Klüppel M (2009) The role of filler networking in fatigue crack propagation of elastomers under high-severity conditions. Macromol Mater Eng 294(2):130–140 Klüppel M (2009) The role of filler networking in fatigue crack propagation of elastomers under high-severity conditions. Macromol Mater Eng 294(2):130–140
31.
go back to reference Vaikuntam SR, Bhagavatheswaran ES, Xiang F, Wießner S, Heinrich G, Das A, Stöckelhuber KW (2020) Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites. Materials 13:270PubMedCentral Vaikuntam SR, Bhagavatheswaran ES, Xiang F, Wießner S, Heinrich G, Das A, Stöckelhuber KW (2020) Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites. Materials 13:270PubMedCentral
32.
go back to reference Sridharan H, Guha A, Bhattacharyya S, Bhowmick AK, Mukhopadhyay R (2019) Effect of silica loading and coupling agent on wear and fatigue properties of a tread compound. Rubber Chem Technol 92:326–349 Sridharan H, Guha A, Bhattacharyya S, Bhowmick AK, Mukhopadhyay R (2019) Effect of silica loading and coupling agent on wear and fatigue properties of a tread compound. Rubber Chem Technol 92:326–349
33.
go back to reference Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stoček R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68 Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stoček R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68
34.
go back to reference Heinrich G, Vilgis TA (1993) Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 26:1109–1119 Heinrich G, Vilgis TA (1993) Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 26:1109–1119
35.
go back to reference Robertson CG, Wang X (2004) Nanoscale cooperative length of local segmental motion in polybutadiene. Macromolecules 37:4266–4270 Robertson CG, Wang X (2004) Nanoscale cooperative length of local segmental motion in polybutadiene. Macromolecules 37:4266–4270
36.
go back to reference Fetters LJ, Hadjichristidis N, Lindner JS, Mays JW (1994) Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution. J Phys Chem Ref Data 23:619–640 Fetters LJ, Hadjichristidis N, Lindner JS, Mays JW (1994) Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution. J Phys Chem Ref Data 23:619–640
37.
go back to reference Hess WM, McDonald GC (1983) Improved particle size measurements on pigments for rubber. Rubber Chem Technol 56:892–917 Hess WM, McDonald GC (1983) Improved particle size measurements on pigments for rubber. Rubber Chem Technol 56:892–917
38.
go back to reference Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871 Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871
39.
go back to reference Busfield JJC, Thomas AG, Yamaguchi K (2004) Electrical and mechanical behavior of filled elastomers 2: the effect of swelling and temperature. J Polym Sci B Polym Phys 42:2161–2167 Busfield JJC, Thomas AG, Yamaguchi K (2004) Electrical and mechanical behavior of filled elastomers 2: the effect of swelling and temperature. J Polym Sci B Polym Phys 42:2161–2167
40.
go back to reference Elhaouzi F, Mdarhri A, Brosseau C, El Aboudi I, Almaggoussi A (2019) Effects of swelling on the effective mechanical and electrical properties of a carbon black-filled polymer. Polym Bull 76:2765–2776 Elhaouzi F, Mdarhri A, Brosseau C, El Aboudi I, Almaggoussi A (2019) Effects of swelling on the effective mechanical and electrical properties of a carbon black-filled polymer. Polym Bull 76:2765–2776
41.
go back to reference Arai K, Ferry JD (1986) Temperature-dependence of viscoelastic properties of carbon-black-filled rubbers in small shearing deformations. Rubber Chem Technol 59:592–604 Arai K, Ferry JD (1986) Temperature-dependence of viscoelastic properties of carbon-black-filled rubbers in small shearing deformations. Rubber Chem Technol 59:592–604
42.
go back to reference Mujtaba A, Keller M, Ilisch S, Radusch HJ, Beiner M, Thurn-Albrecht T, Saalwächter K (2014) Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber–silica Nanocomposites. ACS Macro Lett 3:481–485 Mujtaba A, Keller M, Ilisch S, Radusch HJ, Beiner M, Thurn-Albrecht T, Saalwächter K (2014) Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber–silica Nanocomposites. ACS Macro Lett 3:481–485
43.
go back to reference Sternstein SS, Amanuel S, Shofner ML (2010) Reinforcement mechanisms in Nanofilled polymer melts and elastomers. Rubber Chem Technol 83:181–198 Sternstein SS, Amanuel S, Shofner ML (2010) Reinforcement mechanisms in Nanofilled polymer melts and elastomers. Rubber Chem Technol 83:181–198
44.
go back to reference Warasitthinon N, Genix A-C, Sztucki M, Oberdisse J, Robertson CG (2019) The Payne effect: primarily polymer-related or filler-related phenomenon? Rubber Chem Technol 92:599–611 Warasitthinon N, Genix A-C, Sztucki M, Oberdisse J, Robertson CG (2019) The Payne effect: primarily polymer-related or filler-related phenomenon? Rubber Chem Technol 92:599–611
45.
go back to reference Barbash KP, Mars WV (2016) Critical plane analysis of rubber bushing durability under road loads. SAE technical paper, no. 2016-01-0393 Barbash KP, Mars WV (2016) Critical plane analysis of rubber bushing durability under road loads. SAE technical paper, no. 2016-01-0393
46.
go back to reference Mars WV, Wei Y, Hao W, Bauman MA (2019) Computing Tire component durability via critical plane analysis. Tire Sci Technol 47:31–54 Mars WV, Wei Y, Hao W, Bauman MA (2019) Computing Tire component durability via critical plane analysis. Tire Sci Technol 47:31–54
47.
go back to reference Mars WV (2021) Critical plane analysis of soft materials. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin Mars WV (2021) Critical plane analysis of soft materials. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin
48.
go back to reference Mars WV, Suter JD (2019) Breaking the computational barrier to simulating full road load signals in fatigue. In: Paper C08, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct. 10–12, 2019 Mars WV, Suter JD (2019) Breaking the computational barrier to simulating full road load signals in fatigue. In: Paper C08, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct. 10–12, 2019
49.
go back to reference Aït-Bachir M, Mars WV, Verron E (2012) Energy release rate of small cracks in hyperelastic materials. Int J Non-Linear Mech 47:22–29 Aït-Bachir M, Mars WV, Verron E (2012) Energy release rate of small cracks in hyperelastic materials. Int J Non-Linear Mech 47:22–29
50.
go back to reference Mars WV (2002) Cracking energy density as a predictor of fatigue life under multiaxial conditions. Rubber Chem Technol 75:1–17 Mars WV (2002) Cracking energy density as a predictor of fatigue life under multiaxial conditions. Rubber Chem Technol 75:1–17
51.
go back to reference Wunde M, Klüppel M (2021) The role of phase morphology and energy dissipation around the crack tip in fatigue crack propagation of filler reinforced elastomer blends. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin Wunde M, Klüppel M (2021) The role of phase morphology and energy dissipation around the crack tip in fatigue crack propagation of filler reinforced elastomer blends. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin
52.
go back to reference Windslow RJ, Hohenberger TW, Busfield JJC (2021) Determination of the loading mode dependence of the proportionality parameter for the tearing energy of embedded flaws in elastomers under multiaxial deformations. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin Windslow RJ, Hohenberger TW, Busfield JJC (2021) Determination of the loading mode dependence of the proportionality parameter for the tearing energy of embedded flaws in elastomers under multiaxial deformations. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin
53.
go back to reference Huneau B, Masquelier I, Marco Y, Le Saux V, Noizet S, Schiel C, Charrier P (2016) Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem Technol 89:126–141 Huneau B, Masquelier I, Marco Y, Le Saux V, Noizet S, Schiel C, Charrier P (2016) Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem Technol 89:126–141
54.
go back to reference Ludwig M, Alshuth T, El Yaagoubi M, Juhre D (2015) Lifetime prediction of elastomers based on statistical occurrence of material defects. In: Marvalová B, Petríková I (eds) Constitutive models for rubber IX. CRC Press, Taylor & Francis Group, London, pp 445–448 Ludwig M, Alshuth T, El Yaagoubi M, Juhre D (2015) Lifetime prediction of elastomers based on statistical occurrence of material defects. In: Marvalová B, Petríková I (eds) Constitutive models for rubber IX. CRC Press, Taylor & Francis Group, London, pp 445–448
55.
go back to reference Robertson CG, Tunnicliffe LB, Maciag L, Bauman MA, Miller K, Herd CR, Mars WV (2020) Characterizing distributions of tensile strength and crack precursor size to evaluate filler dispersion effects and reliability of rubber. Polymers 12:203PubMedCentral Robertson CG, Tunnicliffe LB, Maciag L, Bauman MA, Miller K, Herd CR, Mars WV (2020) Characterizing distributions of tensile strength and crack precursor size to evaluate filler dispersion effects and reliability of rubber. Polymers 12:203PubMedCentral
56.
go back to reference Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C (2014) Toughening elastomers with sacrificial bonds and watching them break. Science 344:186–189PubMed Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C (2014) Toughening elastomers with sacrificial bonds and watching them break. Science 344:186–189PubMed
57.
go back to reference Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z (2020) Stretchable and fatigue-resistant materials. Mater Today 34:7–16 Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z (2020) Stretchable and fatigue-resistant materials. Mater Today 34:7–16
58.
go back to reference Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630PubMed Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630PubMed
59.
go back to reference Zhang W, Liu X, Wang J, Tang J, Hu J, Lu T, Suo Z (2018) Fatigue of double-network hydrogels. Eng Fract Mech 187:74–93 Zhang W, Liu X, Wang J, Tang J, Hu J, Lu T, Suo Z (2018) Fatigue of double-network hydrogels. Eng Fract Mech 187:74–93
Metadata
Title
The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method
Authors
Christopher G. Robertson
Radek Stoček
William V. Mars
Copyright Year
2021
DOI
https://doi.org/10.1007/12_2020_71

Premium Partners