Skip to main content
Top

2016 | OriginalPaper | Chapter

3. The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems

Authors : Russell Johnson, Rafael Obaya, Sylvia Novo, Carmen Núñez, Roberta Fabbri

Published in: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let a family of linear Hamiltonian systems determined by a coefficient matrix H be perturbed as to obtain \(H +\lambda J^{-1}\varGamma\), where \(\lambda \in \mathbb{C}\), \(J = \left [\begin{matrix}\scriptstyle 0_{n}&\scriptstyle -I_{n} \\ \scriptstyle I_{n}&\scriptstyle \ \ 0_{n} \end{matrix}\right ]\), and Γ is a positive semidefinite matrix-valued function satisfying an Atkinson nondegeneracy condition. Such a condition ensures the exponential dichotomy property for \(\lambda \notin \mathbb{R}\), as well as the existence of the corresponding Weyl functions, which are determined by the initial data of the solutions bounded as \(t \rightarrow \pm \infty \). These properties can be exploited to define an analytic to define an analytic function \(w_{\varGamma }(\lambda )\) for \(\lambda \notin \mathbb{R}\) on the upper complex half-plane, which is called the Floquet coefficient, whose real part \(-\beta _{\varGamma }(\lambda )\) agrees with the negative Lyapunov index and whose imaginary part \(\alpha _{\varGamma }(\lambda )\) provides an extension of the rotation number. To prove these facts is the goal of this chapter. Among the many consequences of the analysis presented here, it is appropriate to highlight two: first, the rotation number vanishes for λ in an nonempty real interval if and only of all systems corresponding to those values of λ have exponential dichotomy; and second, the rotation number provides a labelling for the gaps of the intervals of the spectrum of the family of operators \(\mathcal{L} = J(d/dt - H)\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press Inc., New York, 1964. F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press Inc., New York, 1964.
11.
go back to reference B.R. Barmish, W.E. Schmitendorf, A necessary and sufficient condition for local constrained controllability of a linear system, IEEE Trans. Autom. Control 25 (1980), 97–100. B.R. Barmish, W.E. Schmitendorf, A necessary and sufficient condition for local constrained controllability of a linear system, IEEE Trans. Autom. Control 25 (1980), 97–100.
28.
go back to reference E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
36.
go back to reference W. Craig, B. Simon, Subharmonicity of the Lyapunov index, Duke Math. J. 50 (2) (1983), 551–560. W. Craig, B. Simon, Subharmonicity of the Lyapunov index, Duke Math. J. 50 (2) (1983), 551–560.
39.
go back to reference N. Dunford, J. Schwartz, Linear Operators, Part II, Interscience, New York, 1967. N. Dunford, J. Schwartz, Linear Operators, Part II, Interscience, New York, 1967.
46.
go back to reference R. Fabbri, R. Johnson, C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. Angew. Math. Phys. 54 (2003), 652–676. R. Fabbri, R. Johnson, C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. Angew. Math. Phys. 54 (2003), 652–676.
54.
go back to reference F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138. F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138.
55.
go back to reference R. Giachetti, R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math Pures et Appli. 65 (1986), 93–117. R. Giachetti, R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math Pures et Appli. 65 (1986), 93–117.
61.
go back to reference D. Hinton, J. Shaw, On Titchmarsh-Weyl m-functions for linear Hamiltonian systems, J. Differential Equations 40 (1981), 316–342. D. Hinton, J. Shaw, On Titchmarsh-Weyl m-functions for linear Hamiltonian systems, J. Differential Equations 40 (1981), 316–342.
62.
go back to reference D. Hinton, J. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differential Equations 50 (1983), 444–464. D. Hinton, J. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differential Equations 50 (1983), 444–464.
71.
go back to reference R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations 61 (1986), 54–78. R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations 61 (1986), 54–78.
72.
go back to reference R. Johnson, m-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. 147 (1987), 211–248. R. Johnson, m-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. 147 (1987), 211–248.
73.
go back to reference R. Johnson, J. Moser, The rotation number for almost periodic differential equations, Comm. Math. Phys. 84 (1982), 403–438. R. Johnson, J. Moser, The rotation number for almost periodic differential equations, Comm. Math. Phys. 84 (1982), 403–438.
75.
go back to reference R. Johnson, M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations 108 (1994), 201–216. R. Johnson, M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations 108 (1994), 201–216.
77.
go back to reference R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998. R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998.
90.
go back to reference P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980. P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980.
91.
go back to reference S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429. S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429.
98.
go back to reference S. Magnus, S. Winkler, Hill’s Equation, Intersci. Publs., John Wiley and Sons, New York, 1966. S. Magnus, S. Winkler, Hill’s Equation, Intersci. Publs., John Wiley and Sons, New York, 1966.
128.
go back to reference W. Rudin, Real and Complex Analysis, McGraw-Hill, Singapore, 1987. W. Rudin, Real and Complex Analysis, McGraw-Hill, Singapore, 1987.
Metadata
Title
The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems
Authors
Russell Johnson
Rafael Obaya
Sylvia Novo
Carmen Núñez
Roberta Fabbri
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29025-6_3