Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2024

01-02-2024

The identification of obstacles immersed in a steady incompressible viscous fluid

Authors: G. Yuksel, D. Lesnic

Published in: Journal of Engineering Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the identification of immersed obstacles in a steady incompressible Navier–Stokes viscous fluid flow from fluid traction measurements is investigated. The solution of the direct problem is computed using the finite element method (FEM) implemented in the Freefem++ commercial software package. The solution of the inverse geometric obstacle problem (parameterized by a small set of unknown constants) is accomplished iteratively by minimizing the nonlinear least-squares functional using an adaptive moment estimation algorithm. The numerical results for the identification of an obstacle in a viscous fluid flowing in a channel with open ends, show that when the fluid traction is measured on the top, bottom and inlet boundaries, then the algorithm provides accurate and robust reconstructions of an obstacle parameterized by a small number of parameters in a Fourier trigonometric finite expansion. Stable reconstructions with respect to noise in the measured fluid traction data are also achieved, although for complicated shapes parameterized by larger degrees of freedom Tikhonov regularization of the least-squares functional may need to be employed. Multiple-component obstacles may also be identified provided that a good initial guess is provided. In case of limited data being available only at the inlet boundary the pressure gradient provides more information for inversion than the fluid traction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Conca C, Cumsille P, Ortega J, Rosier L (2008) On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Probl 24:045001ADSMathSciNetCrossRef Conca C, Cumsille P, Ortega J, Rosier L (2008) On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Probl 24:045001ADSMathSciNetCrossRef
2.
go back to reference Martins NFM, Silvestre AL (2008) An iterative MFS approach for the detection of immersed obstacles. Eng Anal Bound Elem 32:517–524CrossRef Martins NFM, Silvestre AL (2008) An iterative MFS approach for the detection of immersed obstacles. Eng Anal Bound Elem 32:517–524CrossRef
3.
go back to reference Badra M, Caubet F, Dambrine M (2011) Detecting an obstacle immersed in a fluid by shape optimization methods. Math Models Methods Appl Sci 21(10):2069–2101MathSciNetCrossRef Badra M, Caubet F, Dambrine M (2011) Detecting an obstacle immersed in a fluid by shape optimization methods. Math Models Methods Appl Sci 21(10):2069–2101MathSciNetCrossRef
4.
go back to reference Alvarez C, Conca C, Lecaros R, Ortega JH (2008) On the identification of a rigid body immersed in a fluid: a numerical approach. Eng Anal Bound Elem 32:919–925CrossRef Alvarez C, Conca C, Lecaros R, Ortega JH (2008) On the identification of a rigid body immersed in a fluid: a numerical approach. Eng Anal Bound Elem 32:919–925CrossRef
5.
go back to reference Kress R, Meyer S (2005) An inverse boundary value problem for the Oseen equation. Math Methods Appl Sci 23:103–120MathSciNetCrossRef Kress R, Meyer S (2005) An inverse boundary value problem for the Oseen equation. Math Methods Appl Sci 23:103–120MathSciNetCrossRef
6.
go back to reference Karageorghis A, Lesnic D (2020) Identification of obstacles immersed in a stationary Oseen fluid via boundary measurements. Inverse Probl Sci Eng 28(7):950–967MathSciNetCrossRef Karageorghis A, Lesnic D (2020) Identification of obstacles immersed in a stationary Oseen fluid via boundary measurements. Inverse Probl Sci Eng 28(7):950–967MathSciNetCrossRef
7.
go back to reference Karageorghis A, Lesnic D, Marin L (2021) The method of fundamental solutions for Brinkman flows. Part I. Exterior domains. J Eng Math 126:10MathSciNetCrossRef Karageorghis A, Lesnic D, Marin L (2021) The method of fundamental solutions for Brinkman flows. Part I. Exterior domains. J Eng Math 126:10MathSciNetCrossRef
8.
go back to reference Karageorghis A, Lesnic D, Marin L (2021) The method of fundamental solutions for Brinkman flows. Part II. Interior domains. J Eng Math 127:19MathSciNetCrossRef Karageorghis A, Lesnic D, Marin L (2021) The method of fundamental solutions for Brinkman flows. Part II. Interior domains. J Eng Math 127:19MathSciNetCrossRef
9.
go back to reference Alvarez C, Conca C, Friz L, Kavian O, Ortega JH (2005) Detecting an obstacle immersed obstacles via boundary measurements. Inverse Probl 21:1531–1552ADSCrossRef Alvarez C, Conca C, Friz L, Kavian O, Ortega JH (2005) Detecting an obstacle immersed obstacles via boundary measurements. Inverse Probl 21:1531–1552ADSCrossRef
10.
go back to reference Doubova A, Fernandez-Cara E, Ortega JH (2007) On the identification of a single body immersed in a Navier–Stokes fluid. Eur J Appl Math 18(1):57–80MathSciNetCrossRef Doubova A, Fernandez-Cara E, Ortega JH (2007) On the identification of a single body immersed in a Navier–Stokes fluid. Eur J Appl Math 18(1):57–80MathSciNetCrossRef
11.
go back to reference Temam R (1977) Navier–Stokes equations: theory and numerical analysis. AMS Publishing, New York Temam R (1977) Navier–Stokes equations: theory and numerical analysis. AMS Publishing, New York
12.
go back to reference Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR2015), 15 p Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR2015), 15 p
13.
go back to reference Dapogny C, Frey P, Omnes F, Privat Y (2018) Geometrical shape optimization in fluid mechanics using FreeFem++. Struct Multidiscip Optim 58:2761–2788MathSciNetCrossRef Dapogny C, Frey P, Omnes F, Privat Y (2018) Geometrical shape optimization in fluid mechanics using FreeFem++. Struct Multidiscip Optim 58:2761–2788MathSciNetCrossRef
14.
go back to reference Munson BR, Rothmayer AP, Okiiski TH (2013) Fundamentals of fluid mechanics. Wiley, New York Munson BR, Rothmayer AP, Okiiski TH (2013) Fundamentals of fluid mechanics. Wiley, New York
15.
go back to reference Layton W (2008) Introduction to the numerical analysis of incompressible viscous flows. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRef Layton W (2008) Introduction to the numerical analysis of incompressible viscous flows. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRef
16.
go back to reference Braack M, Mucha PB (2011) Directional do-nothing condition for the Navier–Stokes equations. J Comput Math 32(5):507–521MathSciNet Braack M, Mucha PB (2011) Directional do-nothing condition for the Navier–Stokes equations. J Comput Math 32(5):507–521MathSciNet
17.
18.
go back to reference Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 22:325–352MathSciNetCrossRef Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 22:325–352MathSciNetCrossRef
19.
20.
go back to reference Schafer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II. Springer, Berlin, pp 547–566CrossRef Schafer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II. Springer, Berlin, pp 547–566CrossRef
22.
go back to reference Ozisik MN (2000) Inverse heat transfer. Routledge, New York Ozisik MN (2000) Inverse heat transfer. Routledge, New York
23.
go back to reference An LTH, Tao PD, Hao DN (2002) Towards Tikhonov regularization of non-linear ill-posed problems: a dc programming approach. Comptes rendus de l’Academie des Sciences de Paris Series I 335:1073–1078MathSciNet An LTH, Tao PD, Hao DN (2002) Towards Tikhonov regularization of non-linear ill-posed problems: a dc programming approach. Comptes rendus de l’Academie des Sciences de Paris Series I 335:1073–1078MathSciNet
Metadata
Title
The identification of obstacles immersed in a steady incompressible viscous fluid
Authors
G. Yuksel
D. Lesnic
Publication date
01-02-2024
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2024
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10323-1

Other articles of this Issue 1/2024

Journal of Engineering Mathematics 1/2024 Go to the issue

Premium Partners