Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2018

24-04-2018

The Impact of Footprints of Large-Scale Outer Structures on the Near-Wall Layer in the Presence of Drag-Reducing Spanwise Wall Motion

Authors: Lionel Agostini, Michael Leschziner

Published in: Flow, Turbulence and Combustion | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study is motivated by the observation that the drag-reduction effectiveness achieved by the imposition of oscillatory spanwise wall motion declines with Reynolds number. The question thus posed is whether the decline is linked to the increasingly strong influence of large-scale outer structures in the log layer on the near-wall turbulence, in general, and the streak strength in the viscosity-affected layer, in particular – a process referred to as modulation. This question is addressed via an extensive statistical analysis of DNS data for a channel flow at a friction Reynolds number 1020, subjected to oscillatory spanwise wall motion at a nominal wall-scaled period of 100. The analysis rests on a separation of turbulent scales by means of the Empirical Mode Decomposition. This method is used to derive conditional statistics of small-scale motions and skin friction subject to prescribed intensity of large-scale motions – referred to as footprinting. It is shown that the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin friction. Positive large-scale fluctuations are also shown to be the cause of a major amplification of small-scale streaks, relative to weak attenuation by negative fluctuations. This highly asymmetric process is likely to be indirectly influential on the drag-reduction process, although it is not possible to identify this indirect effect in quantitative terms as part of the present analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at. J. Fluid Mech. 743, 606–635 (2014)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at. J. Fluid Mech. 743, 606–635 (2014)CrossRef
2.
go back to reference Agostini, L., Touber, E., Leschziner, M.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)CrossRef Agostini, L., Touber, E., Leschziner, M.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)CrossRef
3.
go back to reference Chung, Y.M., Hurst, E., Yang, Q. Zhou, Y., Lucey, A., Liu, Y., Huang, L. (eds.): DNS for turbulent drag reduction at R e τ = 1600. Springer, Berlin (2016) Chung, Y.M., Hurst, E., Yang, Q. Zhou, Y., Lucey, A., Liu, Y., Huang, L. (eds.): DNS for turbulent drag reduction at R e τ = 1600. Springer, Berlin (2016)
4.
go back to reference Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(12), 125109 (2013)CrossRef Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(12), 125109 (2013)CrossRef
5.
go back to reference Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH
6.
go back to reference Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH
7.
go back to reference Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH
8.
go back to reference Viotti, C., Quadrio, M., Luchini, P.: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. fluids 21(11), 115109 (2009)CrossRefMATH Viotti, C., Quadrio, M., Luchini, P.: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. fluids 21(11), 115109 (2009)CrossRefMATH
9.
go back to reference Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)CrossRef Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)CrossRef
10.
go back to reference Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5, 20–20 (2004)CrossRef Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5, 20–20 (2004)CrossRef
11.
go back to reference Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)CrossRef Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)CrossRef
12.
go back to reference Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)CrossRef Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)CrossRef
13.
go back to reference Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH
14.
go back to reference Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12, N9 (2011) Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12, N9 (2011)
15.
go back to reference Hurst, E., Yang, Q., Chung, Y.M.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)CrossRef Hurst, E., Yang, Q., Chung, Y.M.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)CrossRef
16.
go back to reference Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)MathSciNetCrossRef Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)MathSciNetCrossRef
17.
go back to reference Luchini, P.: Reducing the turbulent skin friction. In: Desideri, J.-A., et al (eds.) Proc. 3rd ECCOMAS CFD conference on computational methods in applied sciences 1996, pp 466–470. Wiley (1996) Luchini, P.: Reducing the turbulent skin friction. In: Desideri, J.-A., et al (eds.) Proc. 3rd ECCOMAS CFD conference on computational methods in applied sciences 1996, pp 466–470. Wiley (1996)
18.
go back to reference Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH
19.
go back to reference Hutchins, N., Monty, J.P., Ganapathisubramani, B., Ng, H.C.H., Marusic, I.: Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255–285 (2011)CrossRefMATH Hutchins, N., Monty, J.P., Ganapathisubramani, B., Ng, H.C.H., Marusic, I.: Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255–285 (2011)CrossRefMATH
20.
go back to reference Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)CrossRefMATH Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)CrossRefMATH
21.
22.
go back to reference Mathis, R., Monty, J.P., Hutchins, N., Marusic, I.: Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21(11), 111703 (2009)CrossRefMATH Mathis, R., Monty, J.P., Hutchins, N., Marusic, I.: Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21(11), 111703 (2009)CrossRefMATH
23.
go back to reference Agostini, L., Leschziner, M., Gaitonde, D.: Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures. Phys. Fluids 28(1), 015110 (2016)CrossRef Agostini, L., Leschziner, M., Gaitonde, D.: Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures. Phys. Fluids 28(1), 015110 (2016)CrossRef
24.
go back to reference Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23(6), 061701 (2011)CrossRef Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23(6), 061701 (2011)CrossRef
25.
go back to reference Schlatter, P., Örlü, R.: Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Phys. Fluids 22(5), 051704 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Phys. Fluids 22(5), 051704 (2010)CrossRefMATH
26.
go back to reference Zhang, C., Chernyshenko, S.I.: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Physical Review Fluids 1(1), 014401 (2016)CrossRef Zhang, C., Chernyshenko, S.I.: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Physical Review Fluids 1(1), 014401 (2016)CrossRef
27.
go back to reference Agostini, L., Leschziner, M.: On the validity of the quasi-steady-turbulence hypothesis in representing the effects of large scales on small scales in boundary layers. Phys. Fluids 28(4), 045102 (2016)CrossRef Agostini, L., Leschziner, M.: On the validity of the quasi-steady-turbulence hypothesis in representing the effects of large scales on small scales in boundary layers. Phys. Fluids 28(4), 045102 (2016)CrossRef
28.
go back to reference Agostini, L., Leschziner, M.: Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28(1), 015107 (2016)CrossRef Agostini, L., Leschziner, M.: Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28(1), 015107 (2016)CrossRef
29.
go back to reference de Giovanetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)MathSciNetCrossRefMATH de Giovanetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)MathSciNetCrossRefMATH
30.
go back to reference Agostini, L., Leschziner, M.: On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26(7), 075107 (2014)CrossRef Agostini, L., Leschziner, M.: On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26(7), 075107 (2014)CrossRef
31.
go back to reference Blesbois, O., Chernyshenko, S.I., Touber, E., Leschziner, M.A.: Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation. J. Fluid Mech. 724, 607–641 (2013)CrossRefMATH Blesbois, O., Chernyshenko, S.I., Touber, E., Leschziner, M.A.: Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation. J. Fluid Mech. 724, 607–641 (2013)CrossRefMATH
32.
go back to reference Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH
33.
go back to reference Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to R e τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to R e τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef
34.
go back to reference Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to R e τ = 5200. J. Fluid Mech. 774, 395–415 (2015)CrossRef Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to R e τ = 5200. J. Fluid Mech. 774, 395–415 (2015)CrossRef
35.
go back to reference Agostini, L., Leschziner, M.: Spectral analysis of near-wall turbulence in channel flow at R e τ = 4200 with emphasis on the attached-eddy hypothesis. Physical Review Fluids 2(1), 014603 (2017)CrossRef Agostini, L., Leschziner, M.: Spectral analysis of near-wall turbulence in channel flow at R e τ = 4200 with emphasis on the attached-eddy hypothesis. Physical Review Fluids 2(1), 014603 (2017)CrossRef
36.
go back to reference Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 8(1), 011702 (2006)CrossRef Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 8(1), 011702 (2006)CrossRef
37.
38.
go back to reference Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Phys. Eng. Sci. 454(1971), 903–995 (1998)MathSciNetCrossRefMATH Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Phys. Eng. Sci. 454(1971), 903–995 (1998)MathSciNetCrossRefMATH
39.
go back to reference Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process Lett. 11(2), 112–114 (2004)CrossRef Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process Lett. 11(2), 112–114 (2004)CrossRef
40.
go back to reference Wu, Z., Huang, N.: A study of the characteristics of white noise using the empirical mode decomposition method. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The Royal Society 460, 1597–1611 (2004)CrossRef Wu, Z., Huang, N.: A study of the characteristics of white noise using the empirical mode decomposition method. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The Royal Society 460, 1597–1611 (2004)CrossRef
41.
go back to reference Townsend, A.A.: The structure of turbulent shear flow. Cambridge University press, Cambridge (1980)MATH Townsend, A.A.: The structure of turbulent shear flow. Cambridge University press, Cambridge (1980)MATH
42.
go back to reference Perry, A., Chong, M.: On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217 (1982)CrossRefMATH Perry, A., Chong, M.: On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217 (1982)CrossRefMATH
43.
go back to reference Davidson, P., Krogstad, P.A., Nickels, T., et al.: A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18(6), 065112 (2006)CrossRefMATH Davidson, P., Krogstad, P.A., Nickels, T., et al.: A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18(6), 065112 (2006)CrossRefMATH
44.
go back to reference Lozano-Durán, A., Jiménez, J.: Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471 (2014)CrossRef Lozano-Durán, A., Jiménez, J.: Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471 (2014)CrossRef
Metadata
Title
The Impact of Footprints of Large-Scale Outer Structures on the Near-Wall Layer in the Presence of Drag-Reducing Spanwise Wall Motion
Authors
Lionel Agostini
Michael Leschziner
Publication date
24-04-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9917-3

Other articles of this Issue 4/2018

Flow, Turbulence and Combustion 4/2018 Go to the issue

Premium Partners