Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2022

02-11-2021

The Influence of Rotational Speed on Bonding Strength, Magnetic Properties, and Mechanical Properties of Fe3O4/ZrO2 Magnetic Composites

Authors: Lianzhi Zhang, Zhangyong Wu, Tingyou Wang, Ziyong Mo

Published in: Journal of Materials Engineering and Performance | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fe3O4/ZrO2 composites were prepared by high-energy ball milling. The principle of coating of magnetic composite particles was deeply investigated. The bonding strength of Fe3O4/ZrO2 magnetic composite particles can be predicted by combining deduced maximum overlap amount of the ZrO2 nanoparticle and Fe3O4 particle and surface energy of particles. Morphologies, magnetic properties and element compositions of samples were analyzed using TEM, VSM, EDS measurement. In addition, the properties of samples were explored qualitatively and quantitatively. According to the results, as rotational speed increases, specific saturation magnetization and coercivity of samples decrease. When the rotational speed of the ball mill is 120r/min, both coefficient of thermal expansion and residual radial compressive stress of samples are the minimums. ZrO2 nanoparticles have the best uniform distribution on the surface of Fe3O4 particle. Fe3O4/ZrO2 magnetic composite particles have the strongest bonding and the best coating. The friction coefficient of the composites is the most stable, and Fe3O4/ZrO2 composites have also good mechanical properties. Briefly, the prepared Fe3O4/ZrO2 composites have good comprehensive properties at 120r/min.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.I. Jang, J. Seok and B.K. Min, An Electrochemomechanical Polishing Process Using Magnetorheological Fluid, Int. J. Mach. Tool. Manu., 2010, 50(10), p 869–881.CrossRef K.I. Jang, J. Seok and B.K. Min, An Electrochemomechanical Polishing Process Using Magnetorheological Fluid, Int. J. Mach. Tool. Manu., 2010, 50(10), p 869–881.CrossRef
2.
go back to reference W.B. Kim, E. Nam and B.K. Min, Material Removal of Glass by Magnetorheological Fluid Jet, Int. J. Pecis. Eng. Man., 2015, 16(4), p 629–637.CrossRef W.B. Kim, E. Nam and B.K. Min, Material Removal of Glass by Magnetorheological Fluid Jet, Int. J. Pecis. Eng. Man., 2015, 16(4), p 629–637.CrossRef
3.
go back to reference X.H. Jiang, G.K. Zhao and W.W. Lu, Vibration Suppression of Complex Thin-Walled Workpiece Based on Magnetorh-Eological Fixture, Int. J. Manuf. Tech., 2020, 106(3), p 1043–1055.CrossRef X.H. Jiang, G.K. Zhao and W.W. Lu, Vibration Suppression of Complex Thin-Walled Workpiece Based on Magnetorh-Eological Fixture, Int. J. Manuf. Tech., 2020, 106(3), p 1043–1055.CrossRef
4.
go back to reference S.S. Anasane and B. Bhattacharyya, Experimental Investigation into Micromilling of Microgroveson Titanium by Electrochemical Micromachining, J. Manuf. Process., 2017, 28(1), p 285–294.CrossRef S.S. Anasane and B. Bhattacharyya, Experimental Investigation into Micromilling of Microgroveson Titanium by Electrochemical Micromachining, J. Manuf. Process., 2017, 28(1), p 285–294.CrossRef
5.
go back to reference A. Milecki and M. Hauke, Application of Magnetorheological Fluid in Industrial Shock Absorbers, Mech. Syst. Si-gnal. Pr., 2012, 28, p 528–541.CrossRef A. Milecki and M. Hauke, Application of Magnetorheological Fluid in Industrial Shock Absorbers, Mech. Syst. Si-gnal. Pr., 2012, 28, p 528–541.CrossRef
6.
go back to reference X.D. Si, M.L. Luo and W.L. Huang, Research, Application and Prospect of Magnetorheological Fluid, Appl. Chem. I-nd., 2017, 46(9), p 1783–1787. X.D. Si, M.L. Luo and W.L. Huang, Research, Application and Prospect of Magnetorheological Fluid, Appl. Chem. I-nd., 2017, 46(9), p 1783–1787.
7.
go back to reference B.C. Kim, J.H. Chung and M.W. Cho, Magnetorheological Fluid Polishing Using an Electromagnet with Straight Pol-Le-Piece for Improving Material Removal Rate, J. Mech. Sci. Technol., 2018, 32(7), p 3345–3350.CrossRef B.C. Kim, J.H. Chung and M.W. Cho, Magnetorheological Fluid Polishing Using an Electromagnet with Straight Pol-Le-Piece for Improving Material Removal Rate, J. Mech. Sci. Technol., 2018, 32(7), p 3345–3350.CrossRef
8.
go back to reference H.L. Jiang, J.K. Yao, X.L. Tian and X.Q. Yang, Technology of Magnetorheological Flllid and its Application in Mac-hining, Tool. tech., 2018, 52(2), p 3–7. H.L. Jiang, J.K. Yao, X.L. Tian and X.Q. Yang, Technology of Magnetorheological Flllid and its Application in Mac-hining, Tool. tech., 2018, 52(2), p 3–7.
9.
go back to reference J. Singh, V.K. Jain and J. Ramkumar, Fabrication of Complex Circuit on Printed Circuit Board (PCB) Using Electro-Chemical Micro-Machining, Int. J. Adv. Manuf. Tech., 2016, 85(9), p 2073–2081.CrossRef J. Singh, V.K. Jain and J. Ramkumar, Fabrication of Complex Circuit on Printed Circuit Board (PCB) Using Electro-Chemical Micro-Machining, Int. J. Adv. Manuf. Tech., 2016, 85(9), p 2073–2081.CrossRef
10.
go back to reference T.R. Amir, Review-Physicochemical Hydrodynamics of Gas Bubbles in Two Phase Electrochem- Ical Systems, J. Electrochem. Soc., 2017, 164(13), p 448–459.CrossRef T.R. Amir, Review-Physicochemical Hydrodynamics of Gas Bubbles in Two Phase Electrochem- Ical Systems, J. Electrochem. Soc., 2017, 164(13), p 448–459.CrossRef
11.
go back to reference S.S. Anasane and B. Bhattacharyya, Experimental Investigation into Micromilling of Microgrooves on Titanium by Electrochemical Micromachining, J. Manuf. Process., 2017, 28(1), p 285–294.CrossRef S.S. Anasane and B. Bhattacharyya, Experimental Investigation into Micromilling of Microgrooves on Titanium by Electrochemical Micromachining, J. Manuf. Process., 2017, 28(1), p 285–294.CrossRef
12.
go back to reference K.B. Kim, B.C. Kim and S.J. Ha, Effect of Pre-Treatment Polishing on Fabrication of Anodic Aluminum Oxide Using Commercial Aluminum Alloy, J. Mech. Sci. Technol., 2017, 31(9), p 4387–4393.CrossRef K.B. Kim, B.C. Kim and S.J. Ha, Effect of Pre-Treatment Polishing on Fabrication of Anodic Aluminum Oxide Using Commercial Aluminum Alloy, J. Mech. Sci. Technol., 2017, 31(9), p 4387–4393.CrossRef
13.
go back to reference D.A. Khan, Z. Alam, F. Iqbal. A study on the effect of polishing fluid composition in ball end magnetorheolo-gical finishing of aluminum. In 39th International matador Conference on Advanced Manufacturing, (2017) D.A. Khan, Z. Alam, F. Iqbal. A study on the effect of polishing fluid composition in ball end magnetorheolo-gical finishing of aluminum. In 39th International matador Conference on Advanced Manufacturing, (2017)
14.
go back to reference W.I. Kordonski and S.D. Jacobs, Magnetorheological Finishing, Int. J. Mod. Phys. B., 2016, 10(23), p 2837. W.I. Kordonski and S.D. Jacobs, Magnetorheological Finishing, Int. J. Mod. Phys. B., 2016, 10(23), p 2837.
15.
go back to reference M. Ashtiani, S.H. Hashemabadi and A. Ghaffari, A Review on the Magnetorheological Fluid Preparation and Stabilization, J. Magn. Magn. Mater., 2015, 374, p 716–730.CrossRef M. Ashtiani, S.H. Hashemabadi and A. Ghaffari, A Review on the Magnetorheological Fluid Preparation and Stabilization, J. Magn. Magn. Mater., 2015, 374, p 716–730.CrossRef
16.
go back to reference Q.L. Wei, C. Wang and Q. Luo, Rhelogical Behaviors of a Magnetorheological Fluid in Magnetic Fields, Magn. Mater. Device., 2013, 0(1), p 6–9. Q.L. Wei, C. Wang and Q. Luo, Rhelogical Behaviors of a Magnetorheological Fluid in Magnetic Fields, Magn. Mater. Device., 2013, 0(1), p 6–9.
17.
go back to reference X. Luo, D. Zuo and M. Wang, Preparation and Characterizations of CeO2/Zn Nanocomposite Powder by High-Energy Ball Milling, Nuaa., 2006, 38(3), p 383–387. X. Luo, D. Zuo and M. Wang, Preparation and Characterizations of CeO2/Zn Nanocomposite Powder by High-Energy Ball Milling, Nuaa., 2006, 38(3), p 383–387.
18.
go back to reference M. Liu, X. Zhong and J. Wang, Microstructure and Thermal Stability of MoSi2–CoNiCrAlY Nanocomposite Feeds- Tock Prepared by High Energy Ball Milling, Surf. Coat. Tech., 2014, 239, p 78–83.CrossRef M. Liu, X. Zhong and J. Wang, Microstructure and Thermal Stability of MoSi2–CoNiCrAlY Nanocomposite Feeds- Tock Prepared by High Energy Ball Milling, Surf. Coat. Tech., 2014, 239, p 78–83.CrossRef
19.
go back to reference X.S. Zhang and Z.F. Fu, A Simple Method to Synthesize Nanosized Li2TiO3 Powders Through High-Energy Ball-Milling, Powder. Metall. Met., 2015, 54(7–8), p 410–415. X.S. Zhang and Z.F. Fu, A Simple Method to Synthesize Nanosized Li2TiO3 Powders Through High-Energy Ball-Milling, Powder. Metall. Met., 2015, 54(7–8), p 410–415.
20.
go back to reference M. Abdellahi, H. Bahmanpour and M. Bahmanpour, The Best Conditions for Minimizing the Synthesis Time of na- Nocomposites During High Energy Ball Milling: Modeling and Optimizing, Ceram. Int., 2014, 40(7), p 9675–9692.CrossRef M. Abdellahi, H. Bahmanpour and M. Bahmanpour, The Best Conditions for Minimizing the Synthesis Time of na- Nocomposites During High Energy Ball Milling: Modeling and Optimizing, Ceram. Int., 2014, 40(7), p 9675–9692.CrossRef
21.
go back to reference M. Abdellahi and M. Bahmanpour, Rapid Synthesis of nanopowders in High Energy Ball Milling; Optimization of Milling Parameters, Ceram. Int., 2015, 41(1), p 1631–1639.CrossRef M. Abdellahi and M. Bahmanpour, Rapid Synthesis of nanopowders in High Energy Ball Milling; Optimization of Milling Parameters, Ceram. Int., 2015, 41(1), p 1631–1639.CrossRef
22.
go back to reference P. Yin, L. Zhang, J. Wang, X. Feng, K.M. Wang, H.B. Rao, Y.Y. Wang and J.W. Dai, Low Frequency Microwave Absorption Property of CIPs/ZnO/Graphene Ternary Hybrid Prepared Via Facile High-Energy Ball Milling, Powder. Technol., 2019, 356, p 325–334.CrossRef P. Yin, L. Zhang, J. Wang, X. Feng, K.M. Wang, H.B. Rao, Y.Y. Wang and J.W. Dai, Low Frequency Microwave Absorption Property of CIPs/ZnO/Graphene Ternary Hybrid Prepared Via Facile High-Energy Ball Milling, Powder. Technol., 2019, 356, p 325–334.CrossRef
23.
go back to reference X.J. Ren, H.L. Chen, S.Q. Yang and Z.Y. Hou, Experimental Study and Preparation Process of Unconsolidated Ma-gnetic Abrasive Particles, Mach. Design. Manuf., 2018, 10, p 89–92. X.J. Ren, H.L. Chen, S.Q. Yang and Z.Y. Hou, Experimental Study and Preparation Process of Unconsolidated Ma-gnetic Abrasive Particles, Mach. Design. Manuf., 2018, 10, p 89–92.
24.
go back to reference W. Zhao, W. Li and X. Bai, Preparation Technology and Experimental Study of Magnetic Abrasive Particles by Bonding Method, Chin. J. Mech. Eng-En., 2019, 30(5), p 535–541. W. Zhao, W. Li and X. Bai, Preparation Technology and Experimental Study of Magnetic Abrasive Particles by Bonding Method, Chin. J. Mech. Eng-En., 2019, 30(5), p 535–541.
25.
go back to reference P. Singh, L. Singh and A. Kaushik, Parametric Optimization of Magnetic Abrasive Finishing Using Adhesive M-agnetic Abrasive Particles, Int. J. Surf. Eng. interdip. Mater. Sci., 2019, 7(2), p 34–47. P. Singh, L. Singh and A. Kaushik, Parametric Optimization of Magnetic Abrasive Finishing Using Adhesive M-agnetic Abrasive Particles, Int. J. Surf. Eng. interdip. Mater. Sci., 2019, 7(2), p 34–47.
26.
go back to reference H.S. Farwaha, Microstructure and Performance Investigation of Magnetic Abrasive Particles, J. C. R., 2020, 7(19), p 289–295. H.S. Farwaha, Microstructure and Performance Investigation of Magnetic Abrasive Particles, J. C. R., 2020, 7(19), p 289–295.
27.
go back to reference L.Z. Jiang, G.X. Zhang, P. Qin, J.P. Liang, T. Xiao and G.Z. Sun, Effects of Particle Size and Core Size of Magnetic a-Brasive on Efficiency of Magnetic Abrasive Finishing, Electroplat. Finish., 2019, 38(4), p 157–160. L.Z. Jiang, G.X. Zhang, P. Qin, J.P. Liang, T. Xiao and G.Z. Sun, Effects of Particle Size and Core Size of Magnetic a-Brasive on Efficiency of Magnetic Abrasive Finishing, Electroplat. Finish., 2019, 38(4), p 157–160.
28.
go back to reference L. Kang, Y. Chen and Z. Qian, Effect of Electrolytic Magnetic Composite Machining on Properties of Magnetic a-Brasive Particles, Diamod. Abrasive. Eng., 2018, 38(1), p 78–81. L. Kang, Y. Chen and Z. Qian, Effect of Electrolytic Magnetic Composite Machining on Properties of Magnetic a-Brasive Particles, Diamod. Abrasive. Eng., 2018, 38(1), p 78–81.
29.
go back to reference Z. Chen, D. Chen, Mechanical alloying and solid-liquid reaction ball milling, BeiJing, 2005 Z. Chen, D. Chen, Mechanical alloying and solid-liquid reaction ball milling, BeiJing, 2005
30.
go back to reference X.W. Shi, H. Lian and R. Qi, Preparation and Properties of Negative Thermal Expansion Zr2P2WO12 Powders and Zr2P2WO12/TiNi Composites, Mater. Sci. Eng., 2016, 203, p 1–6.CrossRef X.W. Shi, H. Lian and R. Qi, Preparation and Properties of Negative Thermal Expansion Zr2P2WO12 Powders and Zr2P2WO12/TiNi Composites, Mater. Sci. Eng., 2016, 203, p 1–6.CrossRef
Metadata
Title
The Influence of Rotational Speed on Bonding Strength, Magnetic Properties, and Mechanical Properties of Fe3O4/ZrO2 Magnetic Composites
Authors
Lianzhi Zhang
Zhangyong Wu
Tingyou Wang
Ziyong Mo
Publication date
02-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06328-5

Other articles of this Issue 3/2022

Journal of Materials Engineering and Performance 3/2022 Go to the issue

Premium Partners