Skip to main content
Top
Published in: Rheologica Acta 8/2008

01-11-2008 | Original Contribution

The influence of wall interaction on dynamic particle modelling of magneto-rheological suspensions between shearing plates

Authors: C. G. Joung, H. See

Published in: Rheologica Acta | Issue 8/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report on the modelling of a magneto-rheological (MR) suspension bound between shearing parallel plates using a particle-level numerical simulation. The simulation is similar to an approach used previously but includes particle hydrodynamic interaction using elements of the Stokesian-dynamic method. Observations of initially chain-like aggregations are reported, and the evolving morphology of suspension particle clusters is explored. Our early-strain observations concur with the prevailing ideas of experimentalists on the important role that the microstructure has on bulk viscosity. We then study in particular the effects of simulation size and strain on viscosity. While initial viscous response is similar to previously reported observations in the literature, when left to run for longer strains, suspensions evolved into markedly different microstructures from those observed experimentally, or in electro-rheological suspensions, or MR simulations with artificial wall interaction. Substantial qualitative and quantitative divergence was observed over long strains. We argue that this divergence is due to the lack of a particle–wall interaction model for MR fluids. While current theories in MR modelling do not justify the requirement for a particle–wall interaction, these results suggest that one is required in order to match experimental observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Without interparticle hydrodynamic interaction.
 
Literature
go back to reference Binous H, Phillips RJ (1999) The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells. J Non-Newton Fluid Mech 85:63–92CrossRef Binous H, Phillips RJ (1999) The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells. J Non-Newton Fluid Mech 85:63–92CrossRef
go back to reference Bonnecaze RT, Brady JF (1992) Dynamic simulation of an electrorheological fluid. J Chem Phys 96(3):2183–2202CrossRef Bonnecaze RT, Brady JF (1992) Dynamic simulation of an electrorheological fluid. J Chem Phys 96(3):2183–2202CrossRef
go back to reference Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157CrossRef Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157CrossRef
go back to reference Cox BJ, Thamwattana N, Hill JM (2006) Electric field-induced force between two identical uncharged spheres. Appl Phys Lett 88:152903, AprilCrossRef Cox BJ, Thamwattana N, Hill JM (2006) Electric field-induced force between two identical uncharged spheres. Appl Phys Lett 88:152903, AprilCrossRef
go back to reference Craig B (2003) One fluid, multiple viscosities—numerous applications. AMPTIAC Q 7(2):15–19 Craig B (2003) One fluid, multiple viscosities—numerous applications. AMPTIAC Q 7(2):15–19
go back to reference Finlayson BA (1980) Nonlinear analysis in chemical engineering. McGraw-Hill International, New York Finlayson BA (1980) Nonlinear analysis in chemical engineering. McGraw-Hill International, New York
go back to reference Kirkwood JG, Riseman J (1948) The instrinsic viscosities and diffusion constants of flexible macromolecules in solution. J Chem Phys 16(6):565–573, JuneCrossRef Kirkwood JG, Riseman J (1948) The instrinsic viscosities and diffusion constants of flexible macromolecules in solution. J Chem Phys 16(6):565–573, JuneCrossRef
go back to reference Kittipoomwong D, Klingenberg DJ, Ulicny JC (2005) Dynamic yield stress enhancement in bidisperse magnetorheological fluids. J Rheol 49(6):1521–1538, NovemberCrossRef Kittipoomwong D, Klingenberg DJ, Ulicny JC (2005) Dynamic yield stress enhancement in bidisperse magnetorheological fluids. J Rheol 49(6):1521–1538, NovemberCrossRef
go back to reference Klingenberg DJ, Swol FV, Zukoski CF (1989) Dynamic simulation of electrorheological suspensions. J Chem Phys 91(12):7888–7895, DecemberCrossRef Klingenberg DJ, Swol FV, Zukoski CF (1989) Dynamic simulation of electrorheological suspensions. J Chem Phys 91(12):7888–7895, DecemberCrossRef
go back to reference Klingenberg DJ, Swol FV, Zukoski CF (1991a) The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit. J Chem Phys 94(9):6160–6169, MayCrossRef Klingenberg DJ, Swol FV, Zukoski CF (1991a) The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit. J Chem Phys 94(9):6160–6169, MayCrossRef
go back to reference Klingenberg DJ, Swol FV, Zukoski CF (1991b) The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J Chem Phys 94(9):6170–6178, MayCrossRef Klingenberg DJ, Swol FV, Zukoski CF (1991b) The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J Chem Phys 94(9):6170–6178, MayCrossRef
go back to reference Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85(9):2785–2795CrossRef Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85(9):2785–2795CrossRef
go back to reference Martin JE (2000) Thermal chain model of electrorheology and magnetorheology. Phys Rev E 63:0114061–0114069CrossRef Martin JE (2000) Thermal chain model of electrorheology and magnetorheology. Phys Rev E 63:0114061–0114069CrossRef
go back to reference Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R17(2):57–103CrossRef Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R17(2):57–103CrossRef
go back to reference Rotne J, Prager S (1969) Variational treatment of hydrodynamic interaction in polymers. J Chem Phys 50(11):4831–4837CrossRef Rotne J, Prager S (1969) Variational treatment of hydrodynamic interaction in polymers. J Chem Phys 50(11):4831–4837CrossRef
go back to reference See H, Doi M (1991) Aggregation kinetics in electro-rheological fluids. J Phys Soc Jpn 60(8):2778–2782, AugustCrossRef See H, Doi M (1991) Aggregation kinetics in electro-rheological fluids. J Phys Soc Jpn 60(8):2778–2782, AugustCrossRef
go back to reference See H, Doi M (1992) Shear resistance of electrorheological fluids under time-varying electric fields. J Rheol 36(6):1143–1163, AugustCrossRef See H, Doi M (1992) Shear resistance of electrorheological fluids under time-varying electric fields. J Rheol 36(6):1143–1163, AugustCrossRef
go back to reference Sim HG, Ahn KH, Lee SJ (2003) Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow. J Rheol 47(4):879–895, JulyCrossRef Sim HG, Ahn KH, Lee SJ (2003) Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow. J Rheol 47(4):879–895, JulyCrossRef
go back to reference Tao R (ed) (1999) Field-induced rheology in uniaxial and biaxial fields. World Scientific Publishing, Singapore, July 1999 Tao R (ed) (1999) Field-induced rheology in uniaxial and biaxial fields. World Scientific Publishing, Singapore, July 1999
go back to reference Toor WR (1993) Structure formation in electrorheological fluids. J Colloid Interface Sci 156:335–349CrossRef Toor WR (1993) Structure formation in electrorheological fluids. J Colloid Interface Sci 156:335–349CrossRef
go back to reference Whittle M (1990) Computer simulation of an electrorheological fluid. J Non-Newton Fluid Mech 37:233–263CrossRef Whittle M (1990) Computer simulation of an electrorheological fluid. J Non-Newton Fluid Mech 37:233–263CrossRef
go back to reference Yamakawa H (1970) Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J Chem Phys 53(1):436–443CrossRef Yamakawa H (1970) Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J Chem Phys 53(1):436–443CrossRef
Metadata
Title
The influence of wall interaction on dynamic particle modelling of magneto-rheological suspensions between shearing plates
Authors
C. G. Joung
H. See
Publication date
01-11-2008
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 8/2008
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-008-0282-3

Other articles of this Issue 8/2008

Rheologica Acta 8/2008 Go to the issue

Premium Partners