Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 16/2018

16-06-2018

The influence of ZnS crystallinity on all-electroplated ZnS/CdS/CdTe graded bandgap device properties

Authors: A. A. Ojo, H. I. Salim, I. M. Dharmadasa

Published in: Journal of Materials Science: Materials in Electronics | Issue 16/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrodeposition of zinc sulphide (ZnS) was achieved from electrolytic bath containing zinc sulphate monohydrate (ZnSO4·H2O) and ammonium thiosulphate ((NH4)2S2O3) in a two-electrode electroplating configuration. The cyclic voltammetric studies show that ZnS layers can be electroplated between (1350 and 1550) mV. The grown layers were characteristically explored for their structural, optical, morphological and electronic properties using X-ray diffraction (XRD) and Raman spectroscopy, UV–Visible spectrophotometry, scanning electron microscopy (SEM), photoelectrochemical (PEC) cell and DC conductivity measurements respectively. The structural analysis shows that crystalline ZnS can be deposited within a narrow cathodic deposition range between (1420 and 1430) mV. The UV–Visible spectrophotometry shows that the bandgap of both as-deposited and heat-treated ZnS films are in the range of ~ (3.70 to 3.90) eV. The SEM shows small grains depicting the wetting property of ZnS. The PEC results show that the electroplated ZnS below 1425 mV is p-type and above 1425 mV is n-type under both as-deposited and heat treated condition. The DC conductivity shows that the highest resistivity is at the inversion growth voltage (Vi) for the ZnS layers. The glass/FTO/n-ZnS/n-CdS/n-CdTe/Au devices were fabricated using crystalline-ZnS and amorphous-ZnS buffer layers. The devices were explored using current–voltage (I-V) and capacitance–voltage (C–V) techniques. As expected, devices fabricated with c-ZnS show improved device parameters (ideality factor n = 1.60, depletion width W = 1092 nm, open-circuit voltage Voc=730 mV, short-circuit current density Jsc=34.1 mAcm−2, fill factor FF = 0.57, conversion efficiency η = 14.2%) when compared to device parameters (n = 1.85, W = 900 nm, Voc=720 mV, Jsc=29.9 mAcm−2, FF = 0.52, η = 11.2%) of these devices fabricated with a-ZnS buffer layers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
4.
go back to reference T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, J. Appl. Phys. 70, 7608 (1991)CrossRef T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, J. Appl. Phys. 70, 7608 (1991)CrossRef
5.
go back to reference J.E. Granata, J.R. Sites, Conf. Rec. 25th IEEE Photovolt. Spec. Conf. 1996, p. 853 (2000) J.E. Granata, J.R. Sites, Conf. Rec. 25th IEEE Photovolt. Spec. Conf. 1996, p. 853 (2000)
7.
go back to reference A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, F. Karg, Thin Solid Films 431–432, 335 (2003)CrossRef A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, F. Karg, Thin Solid Films 431–432, 335 (2003)CrossRef
8.
go back to reference A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 3254 (2017)CrossRef A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 3254 (2017)CrossRef
9.
go back to reference E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, J. Electron. Mater. 44, 3380 (2015)CrossRef E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, J. Electron. Mater. 44, 3380 (2015)CrossRef
10.
go back to reference I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013) I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)
11.
go back to reference S. Tec-Yam, J. Rojas, V. Rejón, A.I. Oliva, Mater. Chem. Phys. 136, 386 (2012)CrossRef S. Tec-Yam, J. Rojas, V. Rejón, A.I. Oliva, Mater. Chem. Phys. 136, 386 (2012)CrossRef
12.
go back to reference G.L. Agawane, S.W. Shin, A.V. Moholkar, K.V. Gurav, J.H. Yun, J.Y. Lee, J.H. Kim, J. Alloys Compd. 535, 53 (2012)CrossRef G.L. Agawane, S.W. Shin, A.V. Moholkar, K.V. Gurav, J.H. Yun, J.Y. Lee, J.H. Kim, J. Alloys Compd. 535, 53 (2012)CrossRef
14.
15.
go back to reference M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, J. Electron. Mater. 45, 2710 (2016)CrossRef M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, J. Electron. Mater. 45, 2710 (2016)CrossRef
16.
go back to reference N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young, I.M. Dharmadasa, Thin Solid Films 472, 212 (2005)CrossRef N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young, I.M. Dharmadasa, Thin Solid Films 472, 212 (2005)CrossRef
17.
go back to reference A.A. Ojo, I.O. Olusola, I.M. Dharmadasa, Mater. Chem. Phys. 196, 229 (2017)CrossRef A.A. Ojo, I.O. Olusola, I.M. Dharmadasa, Mater. Chem. Phys. 196, 229 (2017)CrossRef
19.
go back to reference N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2418 (2015)CrossRef N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2418 (2015)CrossRef
20.
go back to reference H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 3119 (2015)CrossRef H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 3119 (2015)CrossRef
21.
go back to reference I.M. Dharmadasa, A.B. McLean, M.H. Patterson, R.H. Williams, Semicond. Sci. Technol. 2, 404 (1987)CrossRef I.M. Dharmadasa, A.B. McLean, M.H. Patterson, R.H. Williams, Semicond. Sci. Technol. 2, 404 (1987)CrossRef
24.
go back to reference P.U. Londhe, A.B. Rohom, G.R. Bhand, S. Jadhav, M.G. Lakhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 28, 5207 (2017)CrossRef P.U. Londhe, A.B. Rohom, G.R. Bhand, S. Jadhav, M.G. Lakhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 28, 5207 (2017)CrossRef
26.
go back to reference J. Fang, P.H. Holloway, J.E. Yu, K.S. Jones, B. Pathangey, E. Brettschneider, T.J. Anderson, Appl. Surf. Sci. 70–71, 701 (1993)CrossRef J. Fang, P.H. Holloway, J.E. Yu, K.S. Jones, B. Pathangey, E. Brettschneider, T.J. Anderson, Appl. Surf. Sci. 70–71, 701 (1993)CrossRef
27.
go back to reference F. Bittau, A. Abbas, K.L. Barth, J.W. Bowers, J.M. Walls, Thin Solid Films 633, 92 (2017)CrossRef F. Bittau, A. Abbas, K.L. Barth, J.W. Bowers, J.M. Walls, Thin Solid Films 633, 92 (2017)CrossRef
28.
go back to reference A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, CrystEngComm 16, 4120 (2014)CrossRef A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, CrystEngComm 16, 4120 (2014)CrossRef
30.
31.
32.
go back to reference T. Ben Nasr, N. Kamoun, M. Kanzari, R. Bennaceur, Thin Solid Films 500, 4 (2006)CrossRef T. Ben Nasr, N. Kamoun, M. Kanzari, R. Bennaceur, Thin Solid Films 500, 4 (2006)CrossRef
33.
34.
go back to reference J. Wang, M. Isshiki, Springer Handbook Electronic and Photonic Materials (Springer, Boston, 2006), pp. 325–342CrossRef J. Wang, M. Isshiki, Springer Handbook Electronic and Photonic Materials (Springer, Boston, 2006), pp. 325–342CrossRef
35.
go back to reference T. Nakada, M. Mizutani, Y. Hagiwara, A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 255 (2001)CrossRef T. Nakada, M. Mizutani, Y. Hagiwara, A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 255 (2001)CrossRef
36.
go back to reference R. Nomura, T. Murai, T. Toyosaki, H. Matsuda, Thin Solid Films 271, 4 (1995)CrossRef R. Nomura, T. Murai, T. Toyosaki, H. Matsuda, Thin Solid Films 271, 4 (1995)CrossRef
37.
go back to reference A.A. Ojo, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 14110 (2017)CrossRef A.A. Ojo, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 14110 (2017)CrossRef
38.
go back to reference O.K. Echendu, K.B. Okeoma, C.I. Oriaku, I.M. Dharmadasa, Adv. Mater. Sci. Eng. 2016, 1 (2016)CrossRef O.K. Echendu, K.B. Okeoma, C.I. Oriaku, I.M. Dharmadasa, Adv. Mater. Sci. Eng. 2016, 1 (2016)CrossRef
39.
go back to reference A.B. Bhalerao, C.D. Lokhande, B.G. Wagh, IEEE Trans. Nanotechnol. 12, 996 (2013)CrossRef A.B. Bhalerao, C.D. Lokhande, B.G. Wagh, IEEE Trans. Nanotechnol. 12, 996 (2013)CrossRef
40.
go back to reference T. Soga, Nanostructured Materials for Solar Energy Conversion, 1st ed. (Elsevier, Amsterdam, 2006) T. Soga, Nanostructured Materials for Solar Energy Conversion, 1st ed. (Elsevier, Amsterdam, 2006)
41.
go back to reference A. Neugroschel, F.A. Lindholm, C.-T. Sah, IEEE Trans. Electron Devices 24, 662 (1977)CrossRef A. Neugroschel, F.A. Lindholm, C.-T. Sah, IEEE Trans. Electron Devices 24, 662 (1977)CrossRef
42.
43.
go back to reference J. Verschraegen, M. Burgelman, J. Penndorf, Thin Solid Films 480–481, 307 (2005)CrossRef J. Verschraegen, M. Burgelman, J. Penndorf, Thin Solid Films 480–481, 307 (2005)CrossRef
44.
go back to reference M. Abdel Naby, A. Zekry, F.El Akkad, H.F. Ragaie, Sol. Energy Mater. Sol. Cells 29, 97 (1993)CrossRef M. Abdel Naby, A. Zekry, F.El Akkad, H.F. Ragaie, Sol. Energy Mater. Sol. Cells 29, 97 (1993)CrossRef
47.
go back to reference I.M. Dharmadasa, O. Elsherif, G.J. Tolan, J. Phys. Conf. Ser. 286, 012041 (2011)CrossRef I.M. Dharmadasa, O. Elsherif, G.J. Tolan, J. Phys. Conf. Ser. 286, 012041 (2011)CrossRef
48.
go back to reference I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Energies 8, 5440 (2015)CrossRef I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Energies 8, 5440 (2015)CrossRef
52.
53.
go back to reference T. Potlog, L. Ghimpu, P. Gashin, a Pudov, T. Nagle, J. Sites, Sol. Energy Mater. Sol. Cells 80, 327 (2003)CrossRef T. Potlog, L. Ghimpu, P. Gashin, a Pudov, T. Nagle, J. Sites, Sol. Energy Mater. Sol. Cells 80, 327 (2003)CrossRef
Metadata
Title
The influence of ZnS crystallinity on all-electroplated ZnS/CdS/CdTe graded bandgap device properties
Authors
A. A. Ojo
H. I. Salim
I. M. Dharmadasa
Publication date
16-06-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 16/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9491-4

Other articles of this Issue 16/2018

Journal of Materials Science: Materials in Electronics 16/2018 Go to the issue