Skip to main content
Top
Published in: The International Journal of Life Cycle Assessment 3/2019

20-04-2018 | WATER USE IN LCA

The issue of considering water quality in life cycle assessment of water use

Authors: Charlotte Pradinaud, Montserrat Núñez, Philippe Roux, Guillaume Junqua, Ralph K. Rosenbaum

Published in: The International Journal of Life Cycle Assessment | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Available water-use impact assessment methods provide insight into the potential impacts of water use. As water-use impact assessment models develop, the amount of inventory information required increases. Among the parameters needed, water quality is identified as essential since water quality can also influence availability to meet specific water users’ needs. It was argued that these users could be deprived and suffer consequences. However, data on water quality may be difficult to gather and the related impact pathways may entail risks of double counting with emission characterization models. This paper answers to which extent water quality must be considered in water-use impact assessment.

Methods

The role and the necessity of water quality information are discussed along the cause-effect chain of three water-use interventions: water consumption (WU1), water degradation (WU2), and water quality improvement (WU3). Each intervention is individually explored and put in perspective with the human health, ecosystem quality, and natural resources areas of protection (AoPs).

Results and discussion

Our findings suggest that, for WU1, the quality of input water elementary flow might be useful to know the pressure on the resource and the affected users, but alternative methods that avoid the need for this scarce information can be built. WU1 (including quality information) and WU2 are currently assessed by linking water users to water functionality via water quality, which may be misleading in areas unable to compensate for lacking water of a certain quality. In these areas, low-quality water may still be consumed even if it does not fulfill a quality standard. Thus, WU2 would rather lead to toxic impacts instead of to water deprivation impacts since this latter pathway assumes that polluted water below the quality standard will no longer be used. Hence, water deprivation impacts should only focus on WU1 to avoid double counting with emission characterization models. For WU3, no LCA approach exists to meaningfully quantify its environmental benefits, but an indicator for water as a natural resource may be a solution.

Conclusions

This study improves the understanding of the role of water quality information in water-use impact assessment and brings more consistency between existing (and future) models. Further research is required to better understand the positive effects induced by water quality improvement and the effects on freshwater resources themselves. More generally, a framework is required to identify how freshwater resources can be defined as an entity to protect within the AoP natural resource.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337CrossRef Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337CrossRef
go back to reference Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003b) Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol Sci J 48:339–348CrossRef Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003b) Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol Sci J 48:339–348CrossRef
go back to reference Amores MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Castells F (2013) SI-biodiversity impacts from increase in a coastal wetland salinity. Environ Sci Technol 47:6384–6392CrossRef Amores MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Castells F (2013) SI-biodiversity impacts from increase in a coastal wetland salinity. Environ Sci Technol 47:6384–6392CrossRef
go back to reference Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453CrossRef Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453CrossRef
go back to reference Bayart JB, Worbe S, Grimaud J, Aoustin E (2014) The water impact index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344CrossRef Bayart JB, Worbe S, Grimaud J, Aoustin E (2014) The water impact index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344CrossRef
go back to reference Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17:79–89CrossRef Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17:79–89CrossRef
go back to reference Berger M, Van Der Ent R, Eisner S, Bach V, Finkbeiner M (2014) Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528CrossRef Berger M, Van Der Ent R, Eisner S, Bach V, Finkbeiner M (2014) Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528CrossRef
go back to reference Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651CrossRef Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651CrossRef
go back to reference Boulay A-M, Bulle C, Bayart JB, Deschênes L, Margni M (2011b) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957CrossRef Boulay A-M, Bulle C, Bayart JB, Deschênes L, Margni M (2011b) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957CrossRef
go back to reference Boulay A, Bayart J, Bulle C, Franceschini H, Motoshita M, Pfister S, Margni M, Centre EA (2015) Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. Int J Life Cycle Assess 20:865–879CrossRef Boulay A, Bayart J, Bulle C, Franceschini H, Motoshita M, Pfister S, Margni M, Centre EA (2015) Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. Int J Life Cycle Assess 20:865–879CrossRef
go back to reference FAO AQUASTAT (2016) FAO. 2016. AQUASTAT website. Food and agriculture Organization of the United Nations (FAO). Website accessed on 2017/03/07 [WWW document] FAO AQUASTAT (2016) FAO. 2016. AQUASTAT website. Food and agriculture Organization of the United Nations (FAO). Website accessed on 2017/03/07 [WWW document]
go back to reference Frischknecht R, Steiner R, Arthur B, Norbert E, Gabi H (2006) Swiss ecological scarcity method: the new version 2006. Cycle 4 Frischknecht R, Steiner R, Arthur B, Norbert E, Gabi H (2006) Swiss ecological scarcity method: the new version 2006. Cycle 4
go back to reference Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay AM, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Milà i, Canals L, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21:429–442CrossRef Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay AM, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Milà i, Canals L, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21:429–442CrossRef
go back to reference Hanafiah MMM, Xenopoulos MAMA, Pfister S, Leuven RSEWRSEW, Huijbregts MAJMAJ (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278CrossRef Hanafiah MMM, Xenopoulos MAMA, Pfister S, Leuven RSEWRSEW, Huijbregts MAJMAJ (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278CrossRef
go back to reference ISO 14046 (2014) ISO 14046 environmental management water footprint—principles, requirements and guidelines ISO 14046 (2014) ISO 14046 environmental management water footprint—principles, requirements and guidelines
go back to reference Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i, Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721CrossRef Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i, Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721CrossRef
go back to reference Lamouroux N, Capra H (2002) Simple predictions of instream habitat model ouputs for target fish populations. Freshw Biol 47:1543–1556CrossRef Lamouroux N, Capra H (2002) Simple predictions of instream habitat model ouputs for target fish populations. Freshw Biol 47:1543–1556CrossRef
go back to reference Leão S, Roux P, Núñez M, Loiseau E, Junqua G, Sferratore A, Penru Y, Rosenbaum RK (2018) A worldwide-regionalised water supply mix (WSmix) for life cycle inventory of water use. J Clean Prod 172:302–313CrossRef Leão S, Roux P, Núñez M, Loiseau E, Junqua G, Sferratore A, Penru Y, Rosenbaum RK (2018) A worldwide-regionalised water supply mix (WSmix) for life cycle inventory of water use. J Clean Prod 172:302–313CrossRef
go back to reference Loubet P, Roux P, Bellon-Maurel V (2016) WaLA, a versatile model for the life cycle assessment of urban water systems: formalism and framework for a modular approach. Water Res 88:69–82CrossRef Loubet P, Roux P, Bellon-Maurel V (2016) WaLA, a versatile model for the life cycle assessment of urban water systems: formalism and framework for a modular approach. Water Res 88:69–82CrossRef
go back to reference Maugis P (2015) Strateau, un nouvel outil de prospective sur les tensions sur l’eau—Application à la reconstitution des usages de l'eau en France métropolitaine. Congrès SHF “Water Tens. Eur. Mediterr. water Cris. by 2050?” Maugis P (2015) Strateau, un nouvel outil de prospective sur les tensions sur l’eau—Application à la reconstitution des usages de l'eau en France métropolitaine. Congrès SHF “Water Tens. Eur. Mediterr. water Cris. by 2050?”
go back to reference Mosley LM (2015) Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci Rev 140:203–214CrossRef Mosley LM (2015) Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci Rev 140:203–214CrossRef
go back to reference Motoshita M, Itsubo N, Inaba A (2011) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73CrossRef Motoshita M, Itsubo N, Inaba A (2011) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73CrossRef
go back to reference Motoshita M, Ono Y, Pfister S, Boulay AM, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-014-0811-5 Motoshita M, Ono Y, Pfister S, Boulay AM, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess. https://​doi.​org/​10.​1007/​s11367-014-0811-5
go back to reference Nuñez M, Bouchard C, Bulle C, Boulay A-M, Margni M (2016) Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems. Int J Life Cycle Assess 21:1799–1815CrossRef Nuñez M, Bouchard C, Bulle C, Boulay A-M, Margni M (2016) Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems. Int J Life Cycle Assess 21:1799–1815CrossRef
go back to reference Payen S, Basset-Mens C, Núñez M, Follain S, Grünberger O, Marlet S, Perret S, Roux P (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess 21:577–594CrossRef Payen S, Basset-Mens C, Núñez M, Follain S, Grünberger O, Marlet S, Perret S, Roux P (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess 21:577–594CrossRef
go back to reference Pfister S, Suh S (2015) Environmental impacts of thermal emissions to freshwater: spatially explicit fate and effect modeling for life cycle assessment and water footprinting. Int J Life Cycle Assess 20:927–936CrossRef Pfister S, Suh S (2015) Environmental impacts of thermal emissions to freshwater: spatially explicit fate and effect modeling for life cycle assessment and water footprinting. Int J Life Cycle Assess 20:927–936CrossRef
go back to reference Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in life cycle assessment. Environ Sci Technol 43:4098–4104CrossRef Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in life cycle assessment. Environ Sci Technol 43:4098–4104CrossRef
go back to reference Quinteiro P, Dias AC, Araújo A, Pestana JLT, Ridoutt BG, Arroja L (2015) Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota. Int J Life Cycle Assess 20:1232–1242CrossRef Quinteiro P, Dias AC, Araújo A, Pestana JLT, Ridoutt BG, Arroja L (2015) Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota. Int J Life Cycle Assess 20:1232–1242CrossRef
go back to reference Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRef Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRef
go back to reference Sonderegger T, Dewulf J, Fantke P, Pfister S, Stössel F, Verones F, Vieira M, Weidema B, Hellweg S (2016) Natural resources as an area of protection in LCA—outcomes of the discussion by the working group on resources within the UNEP-SETAC life cycle initiative, in: 26th annual meeting of Society of Environmental Toxicology and Chemistry (SETAC). Nantes, France Sonderegger T, Dewulf J, Fantke P, Pfister S, Stössel F, Verones F, Vieira M, Weidema B, Hellweg S (2016) Natural resources as an area of protection in LCA—outcomes of the discussion by the working group on resources within the UNEP-SETAC life cycle initiative, in: 26th annual meeting of Society of Environmental Toxicology and Chemistry (SETAC). Nantes, France
go back to reference UNEP (2016) A snapshot of the world’s water quality: towards a global assessment UNEP (2016) A snapshot of the world’s water quality: towards a global assessment
go back to reference Van Zelm R, Schipper AM, Rombouts M, Snepvangers J, Huijbregts MAJ (2011) Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness for the Netherlands. Environ Sci Technol 45:629–635CrossRef Van Zelm R, Schipper AM, Rombouts M, Snepvangers J, Huijbregts MAJ (2011) Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness for the Netherlands. Environ Sci Technol 45:629–635CrossRef
go back to reference Verones F, Bartl K, Pfister S, Jiménez Vílchez R, Hellweg S (2012) Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environ Sci Technol 46:4966–4974CrossRef Verones F, Bartl K, Pfister S, Jiménez Vílchez R, Hellweg S (2012) Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environ Sci Technol 46:4966–4974CrossRef
go back to reference Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRef Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRef
Metadata
Title
The issue of considering water quality in life cycle assessment of water use
Authors
Charlotte Pradinaud
Montserrat Núñez
Philippe Roux
Guillaume Junqua
Ralph K. Rosenbaum
Publication date
20-04-2018
Publisher
Springer Berlin Heidelberg
Published in
The International Journal of Life Cycle Assessment / Issue 3/2019
Print ISSN: 0948-3349
Electronic ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-018-1473-5

Other articles of this Issue 3/2019

The International Journal of Life Cycle Assessment 3/2019 Go to the issue