Skip to main content
Top
Published in: Journal of Materials Science 19/2014

01-10-2014

The key factor for fabricating through-hole TiO2 nanotube arrays: a fluoride-rich layer between Ti substrate and nanotubes

Authors: Zhi-Yong Luo, Dong-Chuan Mo, Shu-Shen Lu

Published in: Journal of Materials Science | Issue 19/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Through-hole TiO2 nanotube arrays (THTNA) are fabricated successfully by applying a large-voltage pulse (ΔV ≥ 40 V) at the end of anodization, and a mechanism is proposed that the fluoride-rich layer (FRL) between Ti substrate and nanotubes is the key factor for fabricating THTNA. In order to confirm the mechanism, the effects of temperature of voltage pulse on the morphology of the bottom of TiO2 nanotubes are explored. The results show the inner diameter of the bottom became larger with the temperature increasing due to the wall thickness of bottom of TiO2 nanotubes decreased and assisted by the increased fluorine content of the bottom, which is strong evidence for the mechanism proposed. What is more, the inner diameter of the bottom of THTNA can be manipulated via this novel mechanism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304CrossRef Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304CrossRef
2.
go back to reference Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C 113:12759–12765CrossRef Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C 113:12759–12765CrossRef
3.
go back to reference Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955CrossRef Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955CrossRef
4.
go back to reference Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939CrossRef Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939CrossRef
5.
go back to reference Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17:1446–1448CrossRef Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17:1446–1448CrossRef
6.
go back to reference Lee J, Hong KS, Shin K, Jho JY (2012) Fabrication of dye-sensitized solar cells using ordered and vertically oriented TiO2 nanotube arrays with open and closed ends. J Ind Eng Chem 18:19–23CrossRef Lee J, Hong KS, Shin K, Jho JY (2012) Fabrication of dye-sensitized solar cells using ordered and vertically oriented TiO2 nanotube arrays with open and closed ends. J Ind Eng Chem 18:19–23CrossRef
7.
go back to reference Wang J, Lin ZQ (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRef Wang J, Lin ZQ (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRef
8.
go back to reference Lin CJ, Yu WY, Lu YT, Chien SH (2008) Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem Commun 6031–6033. doi:10.1039/b813937g Lin CJ, Yu WY, Lu YT, Chien SH (2008) Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem Commun 6031–6033. doi:10.​1039/​b813937g
9.
go back to reference Liou YH, Kao LC, Tsai MC, Lin CJ (2012) Deposition of CdS nanoparticles within free-standing both-side-open stretched TiO2 nanotube-array films for the enhancement of photoelectrochemical performance. Electrochem Commun 15:66–69CrossRef Liou YH, Kao LC, Tsai MC, Lin CJ (2012) Deposition of CdS nanoparticles within free-standing both-side-open stretched TiO2 nanotube-array films for the enhancement of photoelectrochemical performance. Electrochem Commun 15:66–69CrossRef
10.
go back to reference Chen Q, Xu D, Wu Z, Liu Z (2008) Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 19:365708CrossRef Chen Q, Xu D, Wu Z, Liu Z (2008) Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 19:365708CrossRef
11.
go back to reference Liao J, Lin S, Pan N, Li S, Cao X, Cao Y (2012) Fabrication and photocatalytic properties of free-standing TiO2 nanotube membranes with through-hole morphology. Mater Charact 66:24–29CrossRef Liao J, Lin S, Pan N, Li S, Cao X, Cao Y (2012) Fabrication and photocatalytic properties of free-standing TiO2 nanotube membranes with through-hole morphology. Mater Charact 66:24–29CrossRef
12.
go back to reference Liao J, Lin S, Pan N, Li D, Li S, Li J (2012) Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem Eng J 211–212:343–352CrossRef Liao J, Lin S, Pan N, Li D, Li S, Li J (2012) Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem Eng J 211–212:343–352CrossRef
13.
go back to reference Yip CT, Guo M, Huang H, Zhou L, Wang Y, Huang C (2012) Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 4:448–450CrossRef Yip CT, Guo M, Huang H, Zhou L, Wang Y, Huang C (2012) Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 4:448–450CrossRef
14.
go back to reference Lin CJ, Yu WY, Chien SH (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20:1073–1077CrossRef Lin CJ, Yu WY, Chien SH (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20:1073–1077CrossRef
15.
go back to reference Sun LD, Zhang S, Wang Q, Zhao DL (2012) Conformal growth of anodic nanotubes for dye-sensitized solar cells: part I. Planar electrode. Nanosci Nanotechnol Lett 4:471–482CrossRef Sun LD, Zhang S, Wang Q, Zhao DL (2012) Conformal growth of anodic nanotubes for dye-sensitized solar cells: part I. Planar electrode. Nanosci Nanotechnol Lett 4:471–482CrossRef
16.
go back to reference Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289CrossRef Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289CrossRef
17.
go back to reference Paulose M, Peng L, Popat K, Varghese O, Latempa T, Bao N, Desai T, Grimes C (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Memb Sci 319:199–205CrossRef Paulose M, Peng L, Popat K, Varghese O, Latempa T, Bao N, Desai T, Grimes C (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Memb Sci 319:199–205CrossRef
18.
go back to reference Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38CrossRef Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38CrossRef
19.
go back to reference Wan J, Yan X, Ding J, Wang M, Hu K (2009) Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Mater Charact 60:1534–1540CrossRef Wan J, Yan X, Ding J, Wang M, Hu K (2009) Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Mater Charact 60:1534–1540CrossRef
20.
go back to reference Zhang ZK, Guo DZ, Xing YJ, Zhang GM (2011) Fabrication of open-ended TiO2 nanotube arrays by anodizing a thermally evaporated Ti/Au bilayer film. Appl Surf Sci 257:4139–4143CrossRef Zhang ZK, Guo DZ, Xing YJ, Zhang GM (2011) Fabrication of open-ended TiO2 nanotube arrays by anodizing a thermally evaporated Ti/Au bilayer film. Appl Surf Sci 257:4139–4143CrossRef
21.
go back to reference Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241CrossRef Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241CrossRef
22.
go back to reference Fang D, Huang K, Liu S, Qin D (2009) High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition. Electrochem Commun 11:901–904CrossRef Fang D, Huang K, Liu S, Qin D (2009) High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition. Electrochem Commun 11:901–904CrossRef
23.
go back to reference Choi J, Park SH, Kwon YS, Lim J, Song IY, Park T (2012) Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells. Chem Commun 48:8748–8750CrossRef Choi J, Park SH, Kwon YS, Lim J, Song IY, Park T (2012) Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells. Chem Commun 48:8748–8750CrossRef
24.
go back to reference Liao J, Lin S, Li X, Li S, Cao X, Cao Y (2012) Fabrication of free-standing TiO2 nanotube membranes with through-hole morphology. Cryst Res Technol 47:731–737CrossRef Liao J, Lin S, Li X, Li S, Cao X, Cao Y (2012) Fabrication of free-standing TiO2 nanotube membranes with through-hole morphology. Cryst Res Technol 47:731–737CrossRef
25.
go back to reference Kant K, Losic D (2009) A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi (RRL) Rapid Res Lett 3:139–141CrossRef Kant K, Losic D (2009) A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi (RRL) Rapid Res Lett 3:139–141CrossRef
26.
go back to reference Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochem Commun 12:616–619CrossRef Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochem Commun 12:616–619CrossRef
27.
go back to reference Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22:6656–6664CrossRef Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22:6656–6664CrossRef
28.
go back to reference Ouyang HM, Fei GT, Zhang Y, Su H, Jin Z, Xu SH, De Zhang L (2013) Large scale free-standing open-ended TiO2 nanotube arrays: stress-induced self-detachment and in situ pore opening. J Mater Chem C 1:7498CrossRef Ouyang HM, Fei GT, Zhang Y, Su H, Jin Z, Xu SH, De Zhang L (2013) Large scale free-standing open-ended TiO2 nanotube arrays: stress-induced self-detachment and in situ pore opening. J Mater Chem C 1:7498CrossRef
29.
go back to reference Bian H, Wang Y, Yuan B, Cui J, Shu X, Wu Y, Zhang X, Adeloju S (2013) Flow-through TiO2 nanotube arrays: a modified support with homogeneous distribution of Ag nanoparticles and their photocatalytic activities. New J Chem 37:752–760CrossRef Bian H, Wang Y, Yuan B, Cui J, Shu X, Wu Y, Zhang X, Adeloju S (2013) Flow-through TiO2 nanotube arrays: a modified support with homogeneous distribution of Ag nanoparticles and their photocatalytic activities. New J Chem 37:752–760CrossRef
30.
go back to reference Liu G, Hoivik N, Wang K, Jakobsen H (2011) A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes. J Mater Sci 46:7931–7935CrossRef Liu G, Hoivik N, Wang K, Jakobsen H (2011) A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes. J Mater Sci 46:7931–7935CrossRef
31.
go back to reference Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139 Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139
32.
go back to reference Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S (2011) The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf Sci 605:L57–L60CrossRef Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S (2011) The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf Sci 605:L57–L60CrossRef
33.
go back to reference Song YY, Roy P, Paramasivam I, Schmuki P (2010) Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angew Chem Int Ed 49:351–354CrossRef Song YY, Roy P, Paramasivam I, Schmuki P (2010) Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angew Chem Int Ed 49:351–354CrossRef
34.
go back to reference Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem Commun 2791–2808. doi:10.1039/b822726h Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem Commun 2791–2808. doi:10.​1039/​b822726h
35.
go back to reference Luan X, Guan D, Wang Y (2012) Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J Phys Chem C 116:14257–14263CrossRef Luan X, Guan D, Wang Y (2012) Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J Phys Chem C 116:14257–14263CrossRef
36.
go back to reference Guan D, Wang Y (2012) Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Nanoscale 4:2968–2977CrossRef Guan D, Wang Y (2012) Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Nanoscale 4:2968–2977CrossRef
37.
go back to reference Chen J, Lin J, Chen X (2010) Self-assembled TiO2 nanotube arrays with U-shaped profile by controlling anodization temperature. J Nanomater 2010:1–4 Chen J, Lin J, Chen X (2010) Self-assembled TiO2 nanotube arrays with U-shaped profile by controlling anodization temperature. J Nanomater 2010:1–4
Metadata
Title
The key factor for fabricating through-hole TiO2 nanotube arrays: a fluoride-rich layer between Ti substrate and nanotubes
Authors
Zhi-Yong Luo
Dong-Chuan Mo
Shu-Shen Lu
Publication date
01-10-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8368-z

Other articles of this Issue 19/2014

Journal of Materials Science 19/2014 Go to the issue

Premium Partners