Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2019

01-11-2019

The Mathematical Model of the Fluorescence Processes Accounting for the Quantum Effect of the Nonlocal Screening

Authors: Yu. A. Eremin, A. G. Sveshnikov

Published in: Mathematical Models and Computer Simulations | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the discrete sources method, a mathematical model is developed that enables to analyze the fluorescence process in the presence of a plasmonic structure taking into consideration the nonlocal screening effect. It is shown that the plasmonic structure’s quantum yield can be represented analytically omitting integration procedures. The influence of the effect on the quantum yield and the fluorescence enhancement factor is investigated depending on the plasmonic structure geometry. It is demonstrated that accounting for the nonlocal screening effect leads to a shift of the maximum position towards the long-wave region and a decrease in the amplitude of the fluorescence enhancement factor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. A. Maier, Plasmonics: Fundametals and Applications (Springer Science, New York, 2007).CrossRef S. A. Maier, Plasmonics: Fundametals and Applications (Springer Science, New York, 2007).CrossRef
2.
go back to reference V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011). V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).
3.
go back to reference L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).CrossRef L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).CrossRef
4.
go back to reference H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).CrossRef H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).CrossRef
5.
go back to reference J. Kern, S. Großmann, N. V. Tarakina, T. Häcke, et al., “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).CrossRef J. Kern, S. Großmann, N. V. Tarakina, T. Häcke, et al., “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).CrossRef
6.
go back to reference W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, et al., “Quantum mechanical effects in plasmonic structures with subnanometre gaps. Review,” Nat. Commun. 7, 11495 (2016).CrossRef W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, et al., “Quantum mechanical effects in plasmonic structures with subnanometre gaps. Review,” Nat. Commun. 7, 11495 (2016).CrossRef
7.
go back to reference F. J. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” Phys. Chem. C 112, 17983–17987 (2008).CrossRef F. J. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” Phys. Chem. C 112, 17983–17987 (2008).CrossRef
8.
go back to reference G. Toscano, S. Raza, A. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).CrossRef G. Toscano, S. Raza, A. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).CrossRef
9.
go back to reference L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).CrossRef L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).CrossRef
10.
go back to reference C. Cirací, R. T. Hill, J. J. Mock, Y. Urzhumov, et al., “Probing the ultimate limits of plasmonic enhancement,” Science (Washington, DC, U. S.) 337, 1072–1074 (2012).CrossRef C. Cirací, R. T. Hill, J. J. Mock, Y. Urzhumov, et al., “Probing the ultimate limits of plasmonic enhancement,” Science (Washington, DC, U. S.) 337, 1072–1074 (2012).CrossRef
11.
go back to reference J. Bochterle, F. Neubrech, T. Nagao, and A. Pucci, “Angstrom-scale distance dependence of antenna-enhanced vibrational signals,” ACS Nano 6, 10917–10923 (2012).CrossRef J. Bochterle, F. Neubrech, T. Nagao, and A. Pucci, “Angstrom-scale distance dependence of antenna-enhanced vibrational signals,” ACS Nano 6, 10917–10923 (2012).CrossRef
12.
go back to reference T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).CrossRef T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).CrossRef
13.
go back to reference G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).CrossRef G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).CrossRef
14.
go back to reference S. Raza, S. I. Bozhevolnyi, M. Wubs, and A. N. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter. 27, 183204 (2015). S. Raza, S. I. Bozhevolnyi, M. Wubs, and A. N. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter. 27, 183204 (2015).
15.
go back to reference N. Sui, L. Wang, T. Yan, et al., “Selective and sensitive biosensors based on metal-enhanced fluorescence,” Sens. Actuators, B 202, 1148–1153 (2014).CrossRef N. Sui, L. Wang, T. Yan, et al., “Selective and sensitive biosensors based on metal-enhanced fluorescence,” Sens. Actuators, B 202, 1148–1153 (2014).CrossRef
16.
go back to reference L. Novotny and N. van Hulst, “Antennas for light (review article),” Nat. Photon. 5, 83–90 (2011).CrossRef L. Novotny and N. van Hulst, “Antennas for light (review article),” Nat. Photon. 5, 83–90 (2011).CrossRef
17.
go back to reference J. W. Liaw, H. C. Chen, and M. K. Kuo, “Comparison of Au and Ag nanoshells' metal-enhanced fluorescence,” J. Quant. Spectroscd. Radiat. Trans. 146, 321–330 (2014).CrossRef J. W. Liaw, H. C. Chen, and M. K. Kuo, “Comparison of Au and Ag nanoshells' metal-enhanced fluorescence,” J. Quant. Spectroscd. Radiat. Trans. 146, 321–330 (2014).CrossRef
18.
go back to reference J-W. Liaw, H-C. Chen, and J-H. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Trans. 111, 454–465 (2010).CrossRef J-W. Liaw, H-C. Chen, and J-H. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Trans. 111, 454–465 (2010).CrossRef
19.
go back to reference E. C. le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Ann. Rev. Phys. Chem. 63, 65–87 (2012).CrossRef E. C. le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Ann. Rev. Phys. Chem. 63, 65–87 (2012).CrossRef
20.
go back to reference A. Taflove and S. C. Hagness, Computational Electrodynamics – The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, London, 2005).MATH A. Taflove and S. C. Hagness, Computational Electrodynamics – The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, London, 2005).MATH
21.
go back to reference J. M. Jin, The Finite Element Method in Electromagnetics, 3rd ed. (Wiley-IEEE, New York, 2014).MATH J. M. Jin, The Finite Element Method in Electromagnetics, 3rd ed. (Wiley-IEEE, New York, 2014).MATH
22.
go back to reference K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5 (6), 773–809 (2011).CrossRef K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5 (6), 773–809 (2011).CrossRef
23.
go back to reference L. Li, S. Lanteri, and R. Perrussel, “A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equation,” J. Comput. Phys. 256, 563–581 (2014).MathSciNetCrossRef L. Li, S. Lanteri, and R. Perrussel, “A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equation,” J. Comput. Phys. 256, 563–581 (2014).MathSciNetCrossRef
24.
go back to reference M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review,” J. Quant. Spectrosc. Radiat. Trans. 178, 22–37 (2016).CrossRef M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review,” J. Quant. Spectrosc. Radiat. Trans. 178, 22–37 (2016).CrossRef
25.
go back to reference M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, Ed. by F. della Sala and S. D’Agostino (Pan Stanford, 2013), Chap. 2, pp. 83–135. M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, Ed. by F. della Sala and S. D’Agostino (Pan Stanford, 2013), Chap. 2, pp. 83–135.
26.
go back to reference C. Forestiere, G. Ladarola, G. Rubinacci, et al., “Surface integral furmulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29, 2314–2327 (2012).CrossRef C. Forestiere, G. Ladarola, G. Rubinacci, et al., “Surface integral furmulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29, 2314–2327 (2012).CrossRef
27.
go back to reference F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).CrossRef F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).CrossRef
28.
go back to reference N. G. Khlebtsov, “T-matrix method in plasmonics: an overview,” J. Quant. Spectrosc. Radiat. Trans. 123, 184–217 (2013).CrossRef N. G. Khlebtsov, “T-matrix method in plasmonics: an overview,” J. Quant. Spectrosc. Radiat. Trans. 123, 184–217 (2013).CrossRef
29.
go back to reference Ch. Hafner, J. Smajic, and M. Agio, “Numerical methods for the electrodynamic analysis of nanostructures,” in Nanoclusters and Nanostructured Surfaces, Ed. by A. K. Ray (Am. Sci., Valencia, CA, 2010), pp. 207–274. Ch. Hafner, J. Smajic, and M. Agio, “Numerical methods for the electrodynamic analysis of nanostructures,” in Nanoclusters and Nanostructured Surfaces, Ed. by A. K. Ray (Am. Sci., Valencia, CA, 2010), pp. 207–274.
30.
go back to reference Yu. A. Eremin and A. G. Sveshnikov, “Mathematical models in nanooptics and biophotonics based on the discrete sources method,” Comput. Math. Math. Phys. 47, 262–279 (2007).MathSciNetCrossRef Yu. A. Eremin and A. G. Sveshnikov, “Mathematical models in nanooptics and biophotonics based on the discrete sources method,” Comput. Math. Math. Phys. 47, 262–279 (2007).MathSciNetCrossRef
31.
go back to reference Yu. A. Eremin and A. G. Sveshnikov, “Mathematical model taking into account nonlocal effects of plasmonic structures on the basis of the discrete source method,” Comput. Math. Math. Phys. 58, 572–580 (2018).MathSciNetCrossRef Yu. A. Eremin and A. G. Sveshnikov, “Mathematical model taking into account nonlocal effects of plasmonic structures on the basis of the discrete source method,” Comput. Math. Math. Phys. 58, 572–580 (2018).MathSciNetCrossRef
32.
go back to reference Yu. A. Eremin and A. G. Sveshnikov, “Influence of non-local effect on the scattering properties of non-spherical plasmonic nanoparticles on a substrate,” Math. Models Comput. Simul. 10, 730–740 (2018).MathSciNetCrossRef Yu. A. Eremin and A. G. Sveshnikov, “Influence of non-local effect on the scattering properties of non-spherical plasmonic nanoparticles on a substrate,” Math. Models Comput. Simul. 10, 730–740 (2018).MathSciNetCrossRef
33.
go back to reference Y. Q. Huang, J. C. Li, and W. Yang, “Theoretical and numerical analysis of a non-local dispersion model for light interaction with metallic nanostructures,” Comput. Math. Appl. 72, 921–932 (2016).MathSciNetCrossRef Y. Q. Huang, J. C. Li, and W. Yang, “Theoretical and numerical analysis of a non-local dispersion model for light interaction with metallic nanostructures,” Comput. Math. Appl. 72, 921–932 (2016).MathSciNetCrossRef
34.
go back to reference N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, and J. Viquerat, “A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects,” J. Comput. Phys. 316, 396–415 (2016).MathSciNetCrossRef N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, and J. Viquerat, “A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects,” J. Comput. Phys. 316, 396–415 (2016).MathSciNetCrossRef
35.
go back to reference L. Li, S. Lanteri, N. A. Mortensen, and M. Wubs, “A hybridizable discontinuous Galerkin method for solving nonlocal optical response models,” Comput. Phys. Commun. 219, 99–107 (2017).MathSciNetCrossRef L. Li, S. Lanteri, N. A. Mortensen, and M. Wubs, “A hybridizable discontinuous Galerkin method for solving nonlocal optical response models,” Comput. Phys. Commun. 219, 99–107 (2017).MathSciNetCrossRef
36.
go back to reference N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “New concept of the discrete sources method in electromagnetic scattering problems,” Math. Models Comput. Simul. 8 (2), 175–182 (2016).CrossRef N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “New concept of the discrete sources method in electromagnetic scattering problems,” Math. Models Comput. Simul. 8 (2), 175–182 (2016).CrossRef
37.
go back to reference N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Discrete source method for analysis of fluorescence enhancement in the presence of plasmonic structures,” Comput. Math. Math. Phys. 56, 140–147 (2016).MathSciNetCrossRef N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Discrete source method for analysis of fluorescence enhancement in the presence of plasmonic structures,” Comput. Math. Math. Phys. 56, 140–147 (2016).MathSciNetCrossRef
38.
go back to reference N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1975) [in Russian]. N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1975) [in Russian].
39.
go back to reference V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations (Nauka, Moscow, 1984) [in Russian]. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations (Nauka, Moscow, 1984) [in Russian].
40.
41.
go back to reference N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Analysis of plasmon resonances of closely located particles by the discrete sources method,” Opt. Spectrosc. 113, 440–445 (2012).CrossRef N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Analysis of plasmon resonances of closely located particles by the discrete sources method,” Opt. Spectrosc. 113, 440–445 (2012).CrossRef
Metadata
Title
The Mathematical Model of the Fluorescence Processes Accounting for the Quantum Effect of the Nonlocal Screening
Authors
Yu. A. Eremin
A. G. Sveshnikov
Publication date
01-11-2019
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2019
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219060036

Other articles of this Issue 6/2019

Mathematical Models and Computer Simulations 6/2019 Go to the issue

Premium Partner