Skip to main content
Top

2024 | OriginalPaper | Chapter

3. The Mechanisms and Mechanics Analyses of Fretting Wear and Fretting Fatigue

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fretting wear is a phenomenon when the sliding amplitude is particularly small and is regarded as a phenomenon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Archard IF, Hirst W (1956) Proc Roy Soc A236:397 Archard IF, Hirst W (1956) Proc Roy Soc A236:397
3.
go back to reference Johnson KL (1985) Contact mechanics. Cambridge University Press, 219 Johnson KL (1985) Contact mechanics. Cambridge University Press, 219
4.
5.
go back to reference Hironori N, Soshin Y, Hiroshi T (2012) Yukoyama National College of technology research bulletin No. 45:73–76 Hironori N, Soshin Y, Hiroshi T (2012) Yukoyama National College of technology research bulletin No. 45:73–76
6.
go back to reference Kayaba T, Iwabuchi A (1978) Proc Jpn Soc Mech Eng 44(378):692 Kayaba T, Iwabuchi A (1978) Proc Jpn Soc Mech Eng 44(378):692
7.
8.
go back to reference Vingsbo O, Soderberg S (1987) Wear of materials-1987. ASME 885 Vingsbo O, Soderberg S (1987) Wear of materials-1987. ASME 885
9.
go back to reference Wear F, Handbook F (1998) Fretting wear and fatigue handbook editorial committee. Industrial Data Center, p 25 Wear F, Handbook F (1998) Fretting wear and fatigue handbook editorial committee. Industrial Data Center, p 25
10.
go back to reference Kayaba T, Iwabuchi A (1979) Technology Report. Tohoku Univ 44(2):603 Kayaba T, Iwabuchi A (1979) Technology Report. Tohoku Univ 44(2):603
11.
go back to reference Bryggman U, Soderberg S (1988) Wear 125(1–3):39 Bryggman U, Soderberg S (1988) Wear 125(1–3):39
12.
go back to reference Iwabuchi A, Kato K, Kayaba T (1986) Wear 110 Iwabuchi A, Kato K, Kayaba T (1986) Wear 110
13.
go back to reference Kato K, Suzuki T, Iwabuchi A, Horikirikawa K (1986) Proc Jpn Soc Mech Eng C, 52(482):2732 Kato K, Suzuki T, Iwabuchi A, Horikirikawa K (1986) Proc Jpn Soc Mech Eng C, 52(482):2732
14.
go back to reference Iwabuchi A, Kato K, Horikirikawa K (1987) Takashi suzuki. JSME Proc C 53(487):901CrossRef Iwabuchi A, Kato K, Horikirikawa K (1987) Takashi suzuki. JSME Proc C 53(487):901CrossRef
15.
go back to reference Yoshimoto I (2002) Key points of screw fastener design. Jpn Stand Assoc Yoshimoto I (2002) Key points of screw fastener design. Jpn Stand Assoc
16.
go back to reference Yamamoto A (2004) Principle and design of screw fastening. Yokendo Yamamoto A (2004) Principle and design of screw fastening. Yokendo
17.
go back to reference Children (1980) The sliding wear mechanisms of materials. Tribol Int 13:285–293 Children (1980) The sliding wear mechanisms of materials. Tribol Int 13:285–293
18.
go back to reference Sakai S (2012) Loosening of bolts (2nd report, in the case of bolts subject to rotational load). In: Proceedings of the Japan society of mechanical engineers (Part 3) 44–377 (Showa 53–1), pp 288–292 Sakai S (2012) Loosening of bolts (2nd report, in the case of bolts subject to rotational load). In: Proceedings of the Japan society of mechanical engineers (Part 3) 44–377 (Showa 53–1), pp 288–292
19.
go back to reference Hattori T, Naruse T (2021) Screw fastening technology system learned from accident cases. NTS Hattori T, Naruse T (2021) Screw fastening technology system learned from accident cases. NTS
20.
go back to reference Sakai S, Study on loosening characteristics of connecting rod cap bolts. In: Proceedings of the Japan society of mechanical engineers (Part 3) 43–368 (Showa 52–4), pp 1454–1461 Sakai S, Study on loosening characteristics of connecting rod cap bolts. In: Proceedings of the Japan society of mechanical engineers (Part 3) 43–368 (Showa 52–4), pp 1454–1461
21.
go back to reference Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding The 2nd JSME/ASME international conference on materials and processing, pp (ICS-01) ) 1–6 Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding The 2nd JSME/ASME international conference on materials and processing, pp (ICS-01) ) 1–6
22.
go back to reference Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation in ultra high cycle region considering the fretting wear process. JSME Int J 48(4):246–250 Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation in ultra high cycle region considering the fretting wear process. JSME Int J 48(4):246–250
23.
go back to reference Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39:1100–1105CrossRef Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39:1100–1105CrossRef
24.
go back to reference Hattori T, Nishimura N, Yamashita M (2006) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding of the 9th international fatigue congress, pp FT531 Hattori T, Nishimura N, Yamashita M (2006) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding of the 9th international fatigue congress, pp FT531
25.
go back to reference Sato J (1998) Fretting wear and material dependence, fretting wear and fatigue handbook, fretting wear and fatigue handbook editing committee. Industrial Materials Center, pp 54, in Japanese Sato J (1998) Fretting wear and material dependence, fretting wear and fatigue handbook, fretting wear and fatigue handbook editing committee. Industrial Materials Center, pp 54, in Japanese
26.
go back to reference Sato Y, Mochizuki K (1984) Fretting wear of wear resistant materials. Lubrication 29(10):775–778, in Japanese Sato Y, Mochizuki K (1984) Fretting wear of wear resistant materials. Lubrication 29(10):775–778, in Japanese
28.
go back to reference Goto H (1998) Environmental dependence of fretting wear, handbook of fretting wear and fatigue, editing committee of handbook of fretting wear and fatigue. Industrial Materials Center, p 57, in Japanese Goto H (1998) Environmental dependence of fretting wear, handbook of fretting wear and fatigue, editing committee of handbook of fretting wear and fatigue. Industrial Materials Center, p 57, in Japanese
29.
go back to reference Sakamann BW, Rightmire BG (1948) NACA TN 1492 Sakamann BW, Rightmire BG (1948) NACA TN 1492
30.
go back to reference Iwabuchi A, Kayaba T, Kato K (1983) Wear 91-3:289 Iwabuchi A, Kayaba T, Kato K (1983) Wear 91-3:289
33.
34.
37.
go back to reference Sato J (1977) Lubrication 22(10):622, in Japanese Sato J (1977) Lubrication 22(10):622, in Japanese
38.
go back to reference Wright KHR (1952) Proc IME 167:556, (1952–53) Wright KHR (1952) Proc IME 167:556, (1952–53)
39.
go back to reference Feng I-M, Uhlig HH (1954) J Appl Mech 21–4:395 Feng I-M, Uhlig HH (1954) J Appl Mech 21–4:395
41.
44.
go back to reference Endo Y, Goto H (1979) Lubrication 24–4:251 in Japanese Endo Y, Goto H (1979) Lubrication 24–4:251 in Japanese
45.
go back to reference Buckley DH (1981) Surface effects in adhesion, wear, and Lubrication. Elsevier, Amsterdam, p 506 Buckley DH (1981) Surface effects in adhesion, wear, and Lubrication. Elsevier, Amsterdam, p 506
46.
47.
48.
go back to reference Endo Y, Goto H (1978) Trans JSME No.780–7:235, in Japanese Endo Y, Goto H (1978) Trans JSME No.780–7:235, in Japanese
49.
52.
go back to reference Fenner AJ, Wright KHR, Mann JY (1956) Proc Int Conf Fatigue Met IME 386 Fenner AJ, Wright KHR, Mann JY (1956) Proc Int Conf Fatigue Met IME 386
53.
go back to reference Bill RC (1981) International conference on wear of materials. ASME, JSME, San Francisco 238 Bill RC (1981) International conference on wear of materials. ASME, JSME, San Francisco 238
54.
go back to reference Feng I-M, Rightmire BG (1956) Proc IME 170:1055 Feng I-M, Rightmire BG (1956) Proc IME 170:1055
55.
58.
go back to reference Komoda R, Kubota S, Kondo Y, Furtado J (2013–5) Trans JSME 79–801:536–545, in Japanese Komoda R, Kubota S, Kondo Y, Furtado J (2013–5) Trans JSME 79–801:536–545, in Japanese
59.
go back to reference Kubota S, Tanaka Y, Kondo Y (2007) Effect of hydrogen gas environment on fretting fatigue characteristics of SCM435H and SUH660. Trans Jpn Soc Mech Eng Ser A 73(736):1382–1387 in JapaneseCrossRef Kubota S, Tanaka Y, Kondo Y (2007) Effect of hydrogen gas environment on fretting fatigue characteristics of SCM435H and SUH660. Trans Jpn Soc Mech Eng Ser A 73(736):1382–1387 in JapaneseCrossRef
60.
go back to reference Kubota M, Noyama N, Sakae C, Kondo Y (2006) Fretting fatigue in hydrogen gas. Tribol Int 39(10):1241–1247CrossRef Kubota M, Noyama N, Sakae C, Kondo Y (2006) Fretting fatigue in hydrogen gas. Tribol Int 39(10):1241–1247CrossRef
61.
go back to reference Kubota M, Tanaka Y, Kondo Y (2009) The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines. Tribol Int 42(9):1352–1359CrossRef Kubota M, Tanaka Y, Kondo Y (2009) The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines. Tribol Int 42(9):1352–1359CrossRef
62.
go back to reference Kubota S, Noyama N, Fueda M, Sakae T, Kondo Y (2005) Effect of hydrogen gas environment on Fretting Fatigue. Mater Trans 54(12):1231–1236 in Japanese Kubota S, Noyama N, Fueda M, Sakae T, Kondo Y (2005) Effect of hydrogen gas environment on Fretting Fatigue. Mater Trans 54(12):1231–1236 in Japanese
63.
go back to reference Kubota S, Tanaka Y, Kuwata K, Kondo Y (2010) Fatigue limit lowering mechanism in Fretting Fatigue of SUS304 in hydrogen gas. Mater Trans 59(6):439–446 in Japanese Kubota S, Tanaka Y, Kuwata K, Kondo Y (2010) Fatigue limit lowering mechanism in Fretting Fatigue of SUS304 in hydrogen gas. Mater Trans 59(6):439–446 in Japanese
64.
go back to reference Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings of JSME/ASME 2011 international conference on materials and processing Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings of JSME/ASME 2011 international conference on materials and processing
65.
go back to reference Waterhouse RB, Sato J (1984) Fretting damage and its prevention method (1984), pp 123–126, Yokendo, in Japanese Waterhouse RB, Sato J (1984) Fretting damage and its prevention method (1984), pp 123–126, Yokendo, in Japanese
66.
go back to reference Cai ZB, Zhu MH, Zheng JF, Jin XS, Zhou ZR (2009) Torsional fretting behaviors of LZ50 steel in air and nitrogen. Tribol Int 42(11–12):1676–1683CrossRef Cai ZB, Zhu MH, Zheng JF, Jin XS, Zhou ZR (2009) Torsional fretting behaviors of LZ50 steel in air and nitrogen. Tribol Int 42(11–12):1676–1683CrossRef
67.
go back to reference Ramalho A, Merstallinger A, Cavaleiro A (2006) Fretting behavior of W-Si coated steel in vacuum environments. Wear 261(1):79–85CrossRef Ramalho A, Merstallinger A, Cavaleiro A (2006) Fretting behavior of W-Si coated steel in vacuum environments. Wear 261(1):79–85CrossRef
68.
go back to reference Nishioka K, Hirakawa K (1968) Study on Fretting Fatigue (5th report, effect of relative slip amount). Trans Jpn Soc Mech Eng 37(268):2068–2073 in JapaneseCrossRef Nishioka K, Hirakawa K (1968) Study on Fretting Fatigue (5th report, effect of relative slip amount). Trans Jpn Soc Mech Eng 37(268):2068–2073 in JapaneseCrossRef
69.
go back to reference MSC Software (2010) Marc 2010 Volume A: theory and user information, pp 558–560 MSC Software (2010) Marc 2010 Volume A: theory and user information, pp 558–560
70.
go back to reference Khadem R, O’Connor JJ (1969) Adhesive or frictionless compression of an elastic rectangle between two identical elastic half-spaces. Int J Eng Sci 7(2):153–168CrossRef Khadem R, O’Connor JJ (1969) Adhesive or frictionless compression of an elastic rectangle between two identical elastic half-spaces. Int J Eng Sci 7(2):153–168CrossRef
71.
go back to reference Kubota M, Kataoka S, Kondo Y (2009) Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape. Int J Fatigue 31(3):439–446CrossRef Kubota M, Kataoka S, Kondo Y (2009) Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape. Int J Fatigue 31(3):439–446CrossRef
72.
go back to reference Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39(10):1100–1105CrossRef Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39(10):1100–1105CrossRef
73.
go back to reference Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribol Int 36(2):87–97CrossRef Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribol Int 36(2):87–97CrossRef
74.
go back to reference Kondo Y, Sakae N, Kubota S, Nagasue T (2003) Significance of local stress at contact Edge in Fretting Fatigue. Trans Jpn Soc Mech Eng Ser A 69(678):158–165 in JapaneseCrossRef Kondo Y, Sakae N, Kubota S, Nagasue T (2003) Significance of local stress at contact Edge in Fretting Fatigue. Trans Jpn Soc Mech Eng Ser A 69(678):158–165 in JapaneseCrossRef
75.
go back to reference Iino Y, Miyashita H (2009) Low cycle Fatigue damage accumulation and crack initiation of SUS304 steel in hydrogen gas environment. JSME Ann Meet Proc 1:71–72 in JapaneseCrossRef Iino Y, Miyashita H (2009) Low cycle Fatigue damage accumulation and crack initiation of SUS304 steel in hydrogen gas environment. JSME Ann Meet Proc 1:71–72 in JapaneseCrossRef
76.
go back to reference Kubota S, Sakuma T, Yamaguchi J, Kondo Y (2011) Effect of excessive stress and hydrogen on high cycle fatigue strength of notched austenitic stainless steel. Trans Jpn Soc Mech Eng Ser A 77(782):1747–1759 in JapaneseCrossRef Kubota S, Sakuma T, Yamaguchi J, Kondo Y (2011) Effect of excessive stress and hydrogen on high cycle fatigue strength of notched austenitic stainless steel. Trans Jpn Soc Mech Eng Ser A 77(782):1747–1759 in JapaneseCrossRef
77.
go back to reference Sakamoto Y, Katayama H (1982) Diffusion and dissolution of hydrogen in SUS304 steel around room temperature. J Jpn Inst Met 46(8):805–814 in JapaneseCrossRef Sakamoto Y, Katayama H (1982) Diffusion and dissolution of hydrogen in SUS304 steel around room temperature. J Jpn Inst Met 46(8):805–814 in JapaneseCrossRef
78.
go back to reference Legrand E, Bouhattate J, Feaugas X, Garmestani H (2012) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: II—Consequences of trapping and an oxide later. Int J Hydrogen Energy 37(18):13574–13582 Legrand E, Bouhattate J, Feaugas X, Garmestani H (2012) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: II—Consequences of trapping and an oxide later. Int J Hydrogen Energy 37(18):13574–13582
79.
go back to reference Nagao A, Kuramoto S, Kanno M, Shirakami T (2000) Visualization of hydrogen diffusion behavior in steel promoted by stress gradient and plastic deformation. Tetsu-to-Hagané 86(1):24–31 in JapaneseCrossRef Nagao A, Kuramoto S, Kanno M, Shirakami T (2000) Visualization of hydrogen diffusion behavior in steel promoted by stress gradient and plastic deformation. Tetsu-to-Hagané 86(1):24–31 in JapaneseCrossRef
80.
go back to reference Horikawa K, Ando N, Kobayashi H, Urushihara W (2012) Visualization of hydrogen gas evolution during deformation and fracture in SCM440 steel with different tempering conditions. Mater Sci Eng A 534:495–503 Horikawa K, Ando N, Kobayashi H, Urushihara W (2012) Visualization of hydrogen gas evolution during deformation and fracture in SCM440 steel with different tempering conditions. Mater Sci Eng A 534:495–503
81.
go back to reference Kubota M, Shiraishi Y, Komoda R, Kondo Y, Furtado J (2012) Consideration on the mechanisms causing reduction in fretting fatigue strength by hydrogen. Eur Conf fract (ECF19)), CD-ROM Kubota M, Shiraishi Y, Komoda R, Kondo Y, Furtado J (2012) Consideration on the mechanisms causing reduction in fretting fatigue strength by hydrogen. Eur Conf fract (ECF19)), CD-ROM
82.
go back to reference Goto H et al (1983) Lubrication 26–12:847 in Japanese Goto H et al (1983) Lubrication 26–12:847 in Japanese
83.
go back to reference Nishida Y, Mutoh Y, Kimura T, Morino K, Fukada K (2001) Fretting Fatigue strength of dies steel with radical nitriding. JSME Annu Meet I(01-1):323–324 Nishida Y, Mutoh Y, Kimura T, Morino K, Fukada K (2001) Fretting Fatigue strength of dies steel with radical nitriding. JSME Annu Meet I(01-1):323–324
84.
go back to reference Kondo Y, Sakae C, Kubota M, Yanagihara K (2004) Non-propagating crack at Giga-cycle Fretting Fatigue limit. Trans Jpn Soc Mech Eng Ser A 70(696):1066–1071CrossRef Kondo Y, Sakae C, Kubota M, Yanagihara K (2004) Non-propagating crack at Giga-cycle Fretting Fatigue limit. Trans Jpn Soc Mech Eng Ser A 70(696):1066–1071CrossRef
85.
go back to reference Nishioka K, Hirakawa K (1969) Fundamental investigation of fretting Fatigue (Part3, some phenomena and mechanisms of surfacec racks). Bull JSME 12(51):397–407 Nishioka K, Hirakawa K (1969) Fundamental investigation of fretting Fatigue (Part3, some phenomena and mechanisms of surfacec racks). Bull JSME 12(51):397–407
86.
go back to reference Hattori T (1994) Fretting fatigue problems in structural design. In: Waterhouse RB, Lindley TC (eds) Fretting Fatigue, Mechanical Engineering Publications, pp 437–451 Hattori T (1994) Fretting fatigue problems in structural design. In: Waterhouse RB, Lindley TC (eds) Fretting Fatigue, Mechanical Engineering Publications, pp 437–451
87.
go back to reference Hattori T et al (2012) Strength design handbook for failure prevention of products. NTS (Japanese) Hattori T et al (2012) Strength design handbook for failure prevention of products. NTS (Japanese)
88.
go back to reference Hattori et al (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng A 53–492:1500–1507, (Japanese) Hattori et al (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng A 53–492:1500–1507, (Japanese)
89.
go back to reference Comninou M (1976) Stress singularity at a Sharp Edge in contact problems with friction. J Appl Math Phys (ZAMP) 27:493–499CrossRef Comninou M (1976) Stress singularity at a Sharp Edge in contact problems with friction. J Appl Math Phys (ZAMP) 27:493–499CrossRef
90.
go back to reference Jinquan X, Mutoh M (2002) Stress singularity at edge of frictional contact interface with micro slip. J Mater Sci 51(11):1253–1258, (Japanese) Jinquan X, Mutoh M (2002) Stress singularity at edge of frictional contact interface with micro slip. J Mater Sci 51(11):1253–1258, (Japanese)
91.
go back to reference Kihara and Yoshii, Trans Jpn Soc Mech Eng 56–524, A:903–910, (Japanese) Kihara and Yoshii, Trans Jpn Soc Mech Eng 56–524, A:903–910, (Japanese)
92.
go back to reference Hattori T, Ab Wahad BMA (2011) Fretting Fatigue life estimations based on the critical distance stress theory. Eng Procedia 10:3134–3139 Hattori T, Ab Wahad BMA (2011) Fretting Fatigue life estimations based on the critical distance stress theory. Eng Procedia 10:3134–3139
93.
go back to reference The Society of Materials Science (1982) Japan, data on fatigue strength of metallic materials 1:263, (Japanese) The Society of Materials Science (1982) Japan, data on fatigue strength of metallic materials 1:263, (Japanese)
94.
go back to reference Hattori T, Kawai S, Okamoto N, Sonobe T (1981) Trans Jpn Soc Mech Eng A, 47(415):264, (Japanese) Hattori T, Kawai S, Okamoto N, Sonobe T (1981) Trans Jpn Soc Mech Eng A, 47(415):264, (Japanese)
95.
97.
go back to reference Okamoto (1977) Trans Jpn Soc Mech Eng 43–374:3716, (Japanese) Okamoto (1977) Trans Jpn Soc Mech Eng 43–374:3716, (Japanese)
98.
go back to reference Rooke DP, Jones DAJ (1979) Strain analysis, 14-1:1 Rooke DP, Jones DAJ (1979) Strain analysis, 14-1:1
99.
go back to reference Edwards PR, Cook R (1978) 11th Congr Int Council Aeronaut Sci Lisbon 505 Edwards PR, Cook R (1978) 11th Congr Int Council Aeronaut Sci Lisbon 505
100.
go back to reference Sonobe et al, Hitachi Rev 62–10:57, (Japanese) Sonobe et al, Hitachi Rev 62–10:57, (Japanese)
101.
go back to reference Hattori T et al (1984) Proc 1983 Tokyo Int Gas Turbine Congr 945 Hattori T et al (1984) Proc 1983 Tokyo Int Gas Turbine Congr 945
102.
go back to reference Tada H et al (1979) The stress analysis of cracks handbook 2.7, Del Research Corporation Tada H et al (1979) The stress analysis of cracks handbook 2.7, Del Research Corporation
103.
go back to reference Usami S (1982) Fatigue Thresholds. Eng Advisory Serv 205 Usami S (1982) Fatigue Thresholds. Eng Advisory Serv 205
104.
go back to reference Ouchida H et al (1975) Trans Jpn Soc Mech Eng 41–343:703. (Japanese) Ouchida H et al (1975) Trans Jpn Soc Mech Eng 41–343:703. (Japanese)
105.
go back to reference EL Haddad MH et al (1979) Trans ASME J Eng Mater Technol 101:42 EL Haddad MH et al (1979) Trans ASME J Eng Mater Technol 101:42
106.
go back to reference Sato K et al (1986) Trans Jpn Soc Mech Eng 52–474:417 Sato K et al (1986) Trans Jpn Soc Mech Eng 52–474:417
107.
go back to reference Taylor D (1999) Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21:413–420CrossRef Taylor D (1999) Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21:413–420CrossRef
108.
go back to reference Hattori T, Nakamura M, Sakata H, Watanabe T (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng (A), 53–492:1500–1507. (Japanese) Hattori T, Nakamura M, Sakata H, Watanabe T (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng (A), 53–492:1500–1507. (Japanese)
109.
110.
go back to reference Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics. Tribol Int 36:87CrossRef Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics. Tribol Int 36:87CrossRef
111.
go back to reference Hattori T, Nishimura N, Yamashita M (2007) Fretting Fatigue strength and life estimation considering the fretting wear process. In: Progress in fracture and strength of materials and structures, key engineering materials, 353–358 pp 882–885 Hattori T, Nishimura N, Yamashita M (2007) Fretting Fatigue strength and life estimation considering the fretting wear process. In: Progress in fracture and strength of materials and structures, key engineering materials, 353–358 pp 882–885
112.
go back to reference Hattori T et al (1988) Fretting fatigue analysis using fracture mechanics. JSME Int J Ser l(31):100 Hattori T et al (1988) Fretting fatigue analysis using fracture mechanics. JSME Int J Ser l(31):100
113.
go back to reference Hattori T (2017) Simple estimation method of Fretting Fatigue limit considering wear process. Tribol Int 108:69–74CrossRef Hattori T (2017) Simple estimation method of Fretting Fatigue limit considering wear process. Tribol Int 108:69–74CrossRef
Metadata
Title
The Mechanisms and Mechanics Analyses of Fretting Wear and Fretting Fatigue
Author
Toshio Hattori
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-46498-0_3

Premium Partners