Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 10/2018

03-05-2018 | Original Paper

The Modeling of Time-Dependent Deformation and Fracturing of Brittle Rocks Under Varying Confining and Pore Pressures

Authors: Tao Xu, Guanglei Zhou, Michael J. Heap, Shengqi Yang, Heinz Konietzky, Patrick Baud

Published in: Rock Mechanics and Rock Engineering | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical hydro-mechanical model for brittle creep is proposed to describe the time-dependent deformation of heterogeneous brittle rock under constant confining and pore pressures. Material heterogeneity and a local material degradation law are incorporated into the model at the mesoscale which affects the mechanical behavior of rocks to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The model also describes the spatiotemporal acoustic emissions in the rock during the progressive damage process. The approach presented in this contribution differs from macroscopic approaches based on constitutive laws and microscopic approaches focused on fracture propagation. The model is first validated using experimental data for porous sandstone and is then used to simulate brittle creep tests under varying constant confining and pore pressures and applied differential stresses. We further explore the influence of sample homogeneity on brittle creep. The model accurately replicates the classic creep behavior observed in laboratory brittle creep experiments. In agreement with experimental observations, our model shows that decreasing effective pressure, increasing the applied differential stress, and decreasing sample homogeneity increase the creep strain rate and decrease the time-to-failure, respectively. The model shows that complex macroscopic time-dependent behavior can be explained by the microscale interaction of elements. The fact that the simulations are able to capture a similar hydro-mechanical time-dependent response to that of laboratory experiments implies that the model is an appropriate tool to investigate the complex time-dependent behavior of heterogeneous brittle rocks under coupled hydro-mechanical loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aker E, Kühn D, Vavryčuk V, Soldal M, Oye V (2014) Experimental investigation of acoustic emissions and their moment tensors in rock during failure. Int J Rock Mech Min Sci 70:286–295CrossRef Aker E, Kühn D, Vavryčuk V, Soldal M, Oye V (2014) Experimental investigation of acoustic emissions and their moment tensors in rock during failure. Int J Rock Mech Min Sci 70:286–295CrossRef
go back to reference Amitrano D, Helmstetter A (2006) Brittle creep, damage, and time to failure in rocks. J Geophys Res B 111:1–17CrossRef Amitrano D, Helmstetter A (2006) Brittle creep, damage, and time to failure in rocks. J Geophys Res B 111:1–17CrossRef
go back to reference Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89:4077–4114CrossRef Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89:4077–4114CrossRef
go back to reference Atkinson BK, Meredith PG (1981) Stress corrosion cracking of quartz: a note on the influence of chemical environment. Tectonophysics 77:T1–T11CrossRef Atkinson BK, Meredith PG (1981) Stress corrosion cracking of quartz: a note on the influence of chemical environment. Tectonophysics 77:T1–T11CrossRef
go back to reference Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34:24.e21–24.e10 Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34:24.e21–24.e10
go back to reference Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105:16371–16389CrossRef Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105:16371–16389CrossRef
go back to reference Baud P, Reuschlé T, Ji Y, Cheung CSN, Wong T-F (2015) Mechanical compaction and strain localization in Bleurswiller sandstone. J Geophys Res 120:6501–6522CrossRef Baud P, Reuschlé T, Ji Y, Cheung CSN, Wong T-F (2015) Mechanical compaction and strain localization in Bleurswiller sandstone. J Geophys Res 120:6501–6522CrossRef
go back to reference Bell AF, Greenhough J, Heap MJ, Main IG (2011a) Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophys J Int 185:718–723CrossRef Bell AF, Greenhough J, Heap MJ, Main IG (2011a) Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophys J Int 185:718–723CrossRef
go back to reference Bell AF, Naylor M, Heap MJ, Main IG (2011b) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38:165–176 Bell AF, Naylor M, Heap MJ, Main IG (2011b) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38:165–176
go back to reference Biot MA (1956) General solutions of equations of elasticity and consolidation for a porous material. J Appl Phys 23:91–96 Biot MA (1956) General solutions of equations of elasticity and consolidation for a porous material. J Appl Phys 23:91–96
go back to reference Brantut N, Baud P, Heap MJ, Meredith PG (2012) Micromechanics of brittle creep in rocks. J Geophys Res Solid Earth.117:B8CrossRef Brantut N, Baud P, Heap MJ, Meredith PG (2012) Micromechanics of brittle creep in rocks. J Geophys Res Solid Earth.117:B8CrossRef
go back to reference Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43CrossRef Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43CrossRef
go back to reference Brantut N, Heap MJ, Baud P, Meredith PG (2014a) Mechanisms of time-dependent deformation in porous limestone. J Geophys Res 119:5444–5463CrossRef Brantut N, Heap MJ, Baud P, Meredith PG (2014a) Mechanisms of time-dependent deformation in porous limestone. J Geophys Res 119:5444–5463CrossRef
go back to reference Brantut N, Heap MJ, Baud P, Meredith PG (2014b) Rate- and strain-dependent brittle deformation of rocks. J Geophys Res 119:1818–1836CrossRef Brantut N, Heap MJ, Baud P, Meredith PG (2014b) Rate- and strain-dependent brittle deformation of rocks. J Geophys Res 119:1818–1836CrossRef
go back to reference Carter NL, Hansen FD (1983) Creep of rock salt. Tectonophysics 92:275–333CrossRef Carter NL, Hansen FD (1983) Creep of rock salt. Tectonophysics 92:275–333CrossRef
go back to reference Chen W, Konietzky H (2014) Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633:164–175CrossRef Chen W, Konietzky H (2014) Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633:164–175CrossRef
go back to reference Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30:125–140CrossRef Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30:125–140CrossRef
go back to reference Dubey RK, Gairola VK (2008) Influence of structural anisotropy on creep of rock salt from Simla Himalaya, India: an experimental approach. J Struct Geol 30:710–718CrossRef Dubey RK, Gairola VK (2008) Influence of structural anisotropy on creep of rock salt from Simla Himalaya, India: an experimental approach. J Struct Geol 30:710–718CrossRef
go back to reference Duda M, Renner J (2012) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108CrossRef Duda M, Renner J (2012) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108CrossRef
go back to reference Farquharson J, Heap MJ, Baud P, Reuschlé T, Varley NR (2016) Pore pressure embrittlement in a volcanic edifice. Bull Volcanol 78:1–19CrossRef Farquharson J, Heap MJ, Baud P, Reuschlé T, Varley NR (2016) Pore pressure embrittlement in a volcanic edifice. Bull Volcanol 78:1–19CrossRef
go back to reference Fortin J, Stanchits S, Dresen G, Gueguen Y (2009) Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation. Pure Appl Geophys 166:823–841CrossRef Fortin J, Stanchits S, Dresen G, Gueguen Y (2009) Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation. Pure Appl Geophys 166:823–841CrossRef
go back to reference Golshani A, Okui Y, Oda M, Takemura T (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303CrossRef Golshani A, Okui Y, Oda M, Takemura T (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303CrossRef
go back to reference Heap MJ, Baud P, Meredith PG (2009a) Influence of temperature on brittle creep in sandstones. Geophys Res Lett 36:L19305CrossRef Heap MJ, Baud P, Meredith PG (2009a) Influence of temperature on brittle creep in sandstones. Geophys Res Lett 36:L19305CrossRef
go back to reference Heap MJ, Baud P, Meredith PG, Bell AF, Main IG (2009b) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res 114:1–22CrossRef Heap MJ, Baud P, Meredith PG, Bell AF, Main IG (2009b) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res 114:1–22CrossRef
go back to reference Heap MJ, Baud P, Meredith PG, Vinciguerra S, Bell AF, Main IG (2011) Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet Sci Lett 307:71–82CrossRef Heap MJ, Baud P, Meredith PG, Vinciguerra S, Bell AF, Main IG (2011) Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet Sci Lett 307:71–82CrossRef
go back to reference Heap MJ, Brantut N, Baud P, Meredith PG (2015) Time-dependent compaction band formation in sandstone. Br J Forensic Pract 11:3–7 Heap MJ, Brantut N, Baud P, Meredith PG (2015) Time-dependent compaction band formation in sandstone. Br J Forensic Pract 11:3–7
go back to reference Heard HC (1976) Comparison of the flow properties of rocks at crustal conditions. Philos Trans R Soc Lond A 283:173–186CrossRef Heard HC (1976) Comparison of the flow properties of rocks at crustal conditions. Philos Trans R Soc Lond A 283:173–186CrossRef
go back to reference Homand-Etienne F, Hoxha D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22:135–151CrossRef Homand-Etienne F, Hoxha D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22:135–151CrossRef
go back to reference Jeager JC, Cook NGW, Zimmerman R (eds) (2007) Fundamentals of rock mechanics. Wiley-Blackwell, Singapore Jeager JC, Cook NGW, Zimmerman R (eds) (2007) Fundamentals of rock mechanics. Wiley-Blackwell, Singapore
go back to reference Karrech A, Schrank C, Freij-Ayoub R, Regenauer-Lieb K (2014) A multi-scaling approach to predict hydraulic damage of poromaterials. Int J Mech Sci 78:1–7CrossRef Karrech A, Schrank C, Freij-Ayoub R, Regenauer-Lieb K (2014) A multi-scaling approach to predict hydraulic damage of poromaterials. Int J Mech Sci 78:1–7CrossRef
go back to reference Katz O, Reches Z (2002) Pre-failure damage, time-dependent creep and strength variations of a brittle granite. In: Proceedings of the fifth international conference on anal discontinuous deformation. Ben-Gurion University, Balkema, Rotterdam Katz O, Reches Z (2002) Pre-failure damage, time-dependent creep and strength variations of a brittle granite. In: Proceedings of the fifth international conference on anal discontinuous deformation. Ben-Gurion University, Balkema, Rotterdam
go back to reference Kranz RL (1980) The effects of confining pressure and stress difference on static fatigue of granite. J Geophys Res 85:1854–1866CrossRef Kranz RL (1980) The effects of confining pressure and stress difference on static fatigue of granite. J Geophys Res 85:1854–1866CrossRef
go back to reference Kranz RL, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82:4893–4898CrossRef Kranz RL, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82:4893–4898CrossRef
go back to reference Kranz RL, Harris WJ, Carter NL (1982) Static fatigue of granite at 200 °C. Geophys Res Lett 9:1–4CrossRef Kranz RL, Harris WJ, Carter NL (1982) Static fatigue of granite at 200 °C. Geophys Res Lett 9:1–4CrossRef
go back to reference Kraus H (1980) Creep analysis. Wiley, New York Kraus H (1980) Creep analysis. Wiley, New York
go back to reference Lajtai E, Schmidtke R, Bielus L (1987) The effect of water on the time-dependent deformation and fracture of a granite. Int J Rock Mech Min Sci Geomech Abstr. 24:24–255CrossRef Lajtai E, Schmidtke R, Bielus L (1987) The effect of water on the time-dependent deformation and fracture of a granite. Int J Rock Mech Min Sci Geomech Abstr. 24:24–255CrossRef
go back to reference Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin
go back to reference Li X, Konietzky H (2014) Numerical simulation schemes for time-dependent crack growth in hard brittle rock. Acta Geotech 10:1–19 Li X, Konietzky H (2014) Numerical simulation schemes for time-dependent crack growth in hard brittle rock. Acta Geotech 10:1–19
go back to reference Li X, Konietzky H, Li X (2016) Numerical study on time dependent and time independent fracturing processes for brittle rocks. Eng Fract Mech 163:89–107CrossRef Li X, Konietzky H, Li X (2016) Numerical study on time dependent and time independent fracturing processes for brittle rocks. Eng Fract Mech 163:89–107CrossRef
go back to reference Lin QX, Liu YM, Tham LG, Tang CA, Lee PKK, Wang J (2009) Time-dependent strength degradation of granite. Int J Rock Mech Min Sci 46:1103–1114CrossRef Lin QX, Liu YM, Tham LG, Tang CA, Lee PKK, Wang J (2009) Time-dependent strength degradation of granite. Int J Rock Mech Min Sci 46:1103–1114CrossRef
go back to reference Lockner D (1993a) The role of acoustic-emission in the study of rock fracture. Int J Rock Mech Min Sci 30:883–899CrossRef Lockner D (1993a) The role of acoustic-emission in the study of rock fracture. Int J Rock Mech Min Sci 30:883–899CrossRef
go back to reference Lockner D (1993b) Room temperature creep in saturated granite. J Geophys Res 98:475–487CrossRef Lockner D (1993b) Room temperature creep in saturated granite. J Geophys Res 98:475–487CrossRef
go back to reference Lockner DA, Madden TR (1991) A multiple-crack model of brittle-fracture. 2. Time-dependent simulations. J Geophys Res 96:19643–19654CrossRef Lockner DA, Madden TR (1991) A multiple-crack model of brittle-fracture. 2. Time-dependent simulations. J Geophys Res 96:19643–19654CrossRef
go back to reference Lu Y, Elsworth D, Wang L (2014) A dual-scale approach to model time-dependent deformation, creep and fracturing of brittle rocks. Comput Geotech 60:61–76CrossRef Lu Y, Elsworth D, Wang L (2014) A dual-scale approach to model time-dependent deformation, creep and fracturing of brittle rocks. Comput Geotech 60:61–76CrossRef
go back to reference Mallet C, Fortin J, Guéguen Y, Bouyer F (2015) Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions. J Geophys Res Solid Earth 120(2):879–893CrossRef Mallet C, Fortin J, Guéguen Y, Bouyer F (2015) Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions. J Geophys Res Solid Earth 120(2):879–893CrossRef
go back to reference Maranini E, Brignoli M (1999) Creep behavior of a weak rock: experimental characterization. Int J Rock Mech Min Sci 36(1):127–138CrossRef Maranini E, Brignoli M (1999) Creep behavior of a weak rock: experimental characterization. Int J Rock Mech Min Sci 36(1):127–138CrossRef
go back to reference Maranini E, Yamaguchi T (2001) A non-associated viscoplastic model for the behavior of granite in triaxial compression. Mech Mater 33:283–293CrossRef Maranini E, Yamaguchi T (2001) A non-associated viscoplastic model for the behavior of granite in triaxial compression. Mech Mater 33:283–293CrossRef
go back to reference Meredith PG, Atkinson BK (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Int 75:1–21CrossRef Meredith PG, Atkinson BK (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Int 75:1–21CrossRef
go back to reference Nicolas A, Fortin J, Regnet JB, Verberne BA, Plümper O, Dimanov A, Spiers CJ, Guéguen Y (2017) Brittle and semi-brittle creep of Tavel limestone deformed at room temperature. J Geophys Res 122:4436–4459CrossRef Nicolas A, Fortin J, Regnet JB, Verberne BA, Plümper O, Dimanov A, Spiers CJ, Guéguen Y (2017) Brittle and semi-brittle creep of Tavel limestone deformed at room temperature. J Geophys Res 122:4436–4459CrossRef
go back to reference Ngwenya B, Main I, Elphick S, Crawford B, Smart B (2001) A constitutive law for low-temperature creep of water-saturated sandstones. J Geophys Res 106:21811–21826CrossRef Ngwenya B, Main I, Elphick S, Crawford B, Smart B (2001) A constitutive law for low-temperature creep of water-saturated sandstones. J Geophys Res 106:21811–21826CrossRef
go back to reference Ohnaka M (1983) Acoustic emission during creep of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 20:121–134CrossRef Ohnaka M (1983) Acoustic emission during creep of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 20:121–134CrossRef
go back to reference Okubo S, Fukui K, Hashiba K (2010) Long-term creep of water-saturated tuff under uniaxial compression. Int J Rock Mech Min Sci 47:839–844CrossRef Okubo S, Fukui K, Hashiba K (2010) Long-term creep of water-saturated tuff under uniaxial compression. Int J Rock Mech Min Sci 47:839–844CrossRef
go back to reference Pan Z, Wan-xie Z (1991) The parametric variational principle for Perzyna model in viscoplasticity. Appl Math Mech 12:433–437CrossRef Pan Z, Wan-xie Z (1991) The parametric variational principle for Perzyna model in viscoplasticity. Appl Math Mech 12:433–437CrossRef
go back to reference Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behavior of rock. Int J Numer Anal Methods Geomech 29:941–970CrossRef Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behavior of rock. Int J Numer Anal Methods Geomech 29:941–970CrossRef
go back to reference Peng T-R, Wang C-H, Hsu S-M, Wang G-S, Su T-W, Lee J-F (2010) Identification of groundwater sources of a local-scale creep slope: using environmental stable isotopes as tracers. J Hydrol 381:151–157CrossRef Peng T-R, Wang C-H, Hsu S-M, Wang G-S, Su T-W, Lee J-F (2010) Identification of groundwater sources of a local-scale creep slope: using environmental stable isotopes as tracers. J Hydrol 381:151–157CrossRef
go back to reference Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377CrossRef Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377CrossRef
go back to reference Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354CrossRef Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354CrossRef
go back to reference Schubnel A, Walker E, Thompson BD, Fortin J, Guéguen Y, Young RP (2006) Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition. Geophys Res Lett 33:L17301CrossRef Schubnel A, Walker E, Thompson BD, Fortin J, Guéguen Y, Young RP (2006) Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition. Geophys Res Lett 33:L17301CrossRef
go back to reference Shao JF, Duveau G, Hoteit N, Sibai M, Bart M (1997) Time dependent continuous damage model for deformation and failure of brittle rock. Int J Rock Mech Min Sci 34:285.e281–285.e213 Shao JF, Duveau G, Hoteit N, Sibai M, Bart M (1997) Time dependent continuous damage model for deformation and failure of brittle rock. Int J Rock Mech Min Sci 34:285.e281–285.e213
go back to reference Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30:549–555CrossRef Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30:549–555CrossRef
go back to reference Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592CrossRef Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592CrossRef
go back to reference She C, Xuan C (2010) Influence of high pore water pressure on creep properties of rock. Chin J Rock Mech Eng 29:1603–1609 She C, Xuan C (2010) Influence of high pore water pressure on creep properties of rock. Chin J Rock Mech Eng 29:1603–1609
go back to reference Sterpi D, Gioda G (2009) Visco-plastic behavior around advancing tunnels in squeezing rock. Rock Mech Rock Eng 42:319–339CrossRef Sterpi D, Gioda G (2009) Visco-plastic behavior around advancing tunnels in squeezing rock. Rock Mech Rock Eng 42:319–339CrossRef
go back to reference Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261CrossRef Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261CrossRef
go back to reference Vasseur J, Wadsworth FB, Lavallée Y, Bell AF, Main IG, Dingwell DB (2015) Heterogeneity: the key to failure forecasting. Sci Rep 5:13259CrossRef Vasseur J, Wadsworth FB, Lavallée Y, Bell AF, Main IG, Dingwell DB (2015) Heterogeneity: the key to failure forecasting. Sci Rep 5:13259CrossRef
go back to reference Vasseur J, Wadsworth FB, Heap MJ, Main IG, Lavallée Y, Dingwell DB (2017) Does an inter-flaw length control the accuracy of rupture forecasting in geological materials? Earth Planet Sci Lett 475:181–189CrossRef Vasseur J, Wadsworth FB, Heap MJ, Main IG, Lavallée Y, Dingwell DB (2017) Does an inter-flaw length control the accuracy of rupture forecasting in geological materials? Earth Planet Sci Lett 475:181–189CrossRef
go back to reference Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203CrossRef Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203CrossRef
go back to reference Wang WM, Sluys LJ, De Borst R (2015) Viscoplasticity for instabilities due to strain softening and strain‐rate softening. Int J Numer Meth Eng 40:3839–3864CrossRef Wang WM, Sluys LJ, De Borst R (2015) Viscoplasticity for instabilities due to strain softening and strain‐rate softening. Int J Numer Meth Eng 40:3839–3864CrossRef
go back to reference Wasantha PLP, Ranjith PG, Shao SS (2014) Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission. Ultrasonics 54:217–226CrossRef Wasantha PLP, Ranjith PG, Shao SS (2014) Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission. Ultrasonics 54:217–226CrossRef
go back to reference Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297 Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297
go back to reference Weiss J, Marsan D (2003) Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science 299:89–92CrossRef Weiss J, Marsan D (2003) Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science 299:89–92CrossRef
go back to reference Weng MC, Tsai LS, Liao CY, Jeng FS (2010) Numerical modeling of tunnel excavation in weak sandstone using a time-dependent anisotropic degradation model. Tunn Undergr Space Technol 25:397–406CrossRef Weng MC, Tsai LS, Liao CY, Jeng FS (2010) Numerical modeling of tunnel excavation in weak sandstone using a time-dependent anisotropic degradation model. Tunn Undergr Space Technol 25:397–406CrossRef
go back to reference Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102:3009–3025CrossRef Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102:3009–3025CrossRef
go back to reference Wong TF, Wong RHC, Chau KT, Tang CA (2006) Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech Mater 38:664–681CrossRef Wong TF, Wong RHC, Chau KT, Tang CA (2006) Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech Mater 38:664–681CrossRef
go back to reference Xu P, Yang S-Q (2016) Permeability evolution of sandstone under short-term and long-term triaxial compression. Int J Rock Mech Min Sci 85:152–164CrossRef Xu P, Yang S-Q (2016) Permeability evolution of sandstone under short-term and long-term triaxial compression. Int J Rock Mech Min Sci 85:152–164CrossRef
go back to reference Xu T, Tang C, Zhao J, Li L, Heap MJ (2012) Modelling the time-dependent rheological behavior of heterogeneous brittle rocks. Geophys J Int 189:1781–1796CrossRef Xu T, Tang C, Zhao J, Li L, Heap MJ (2012) Modelling the time-dependent rheological behavior of heterogeneous brittle rocks. Geophys J Int 189:1781–1796CrossRef
go back to reference Xu T, Zhou GL, Heap MJ, Zhu WC, Chen CF, Baud P (2017) The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach. Rock Mech Rock Eng 50:2345–2364CrossRef Xu T, Zhou GL, Heap MJ, Zhu WC, Chen CF, Baud P (2017) The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach. Rock Mech Rock Eng 50:2345–2364CrossRef
go back to reference Yang S-Q, Jing H-W, Cheng L (2014) Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng Geol 179:10–23CrossRef Yang S-Q, Jing H-W, Cheng L (2014) Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng Geol 179:10–23CrossRef
go back to reference Yoshida H, Horii H (1992) A micromechanics-based model for creep behavior of rock. Appl Mech Rev 45:294–303CrossRef Yoshida H, Horii H (1992) A micromechanics-based model for creep behavior of rock. Appl Mech Rev 45:294–303CrossRef
go back to reference Zhu YY, Cescotto S (1995) A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int J Solids Struct 32:1607–1641CrossRef Zhu YY, Cescotto S (1995) A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int J Solids Struct 32:1607–1641CrossRef
go back to reference Zhu WC, Wei J, Zhao J, Niu LL (2014) 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution. Tunn Undergr Space Technol 43:315–326CrossRef Zhu WC, Wei J, Zhao J, Niu LL (2014) 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution. Tunn Undergr Space Technol 43:315–326CrossRef
Metadata
Title
The Modeling of Time-Dependent Deformation and Fracturing of Brittle Rocks Under Varying Confining and Pore Pressures
Authors
Tao Xu
Guanglei Zhou
Michael J. Heap
Shengqi Yang
Heinz Konietzky
Patrick Baud
Publication date
03-05-2018
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 10/2018
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-018-1491-4

Other articles of this Issue 10/2018

Rock Mechanics and Rock Engineering 10/2018 Go to the issue