Skip to main content
Top
Published in: Archive of Applied Mechanics 7/2021

27-04-2021 | Original

The nonlinear thermo-hyperelasticity wave propagation analysis of near-incompressible functionally graded medium under mechanical and thermal loadings

Authors: Farshad Shakeriaski, Maryam Ghodrat, Juan Escobedo-Diaz, Masud Behnia

Published in: Archive of Applied Mechanics | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents a non-Fourier thermo-hyperelastic model to investigate thermal and stress wave propagation phenomenon in a near-incompressible functionally graded medium (FGM) for various thermal and mechanical boundary conditions. A strain energy function is chosen to modify FGM’s hyperelastic equations considering the coupling effects of mechanical and thermal terms. By switching the strain tensor's invariants, equations are developed to estimate a near-incompressible model for rubber. The rubber is characterized by a gradual variation in the longitudinal direction. Therefore, the material properties of rubber mainly depend on coordinates in through an exponential function. The nonlinear governing equations are derived from the large displacement approach using Finite Strain Theory. To find an acceptable solution of nonlinear time-dependent thermo-hyperelastic equations, Newmark's time integration process and a nonlinear Hermitian finite element algorithm are employed. The final system’s responses to different boundary conditions such as input surface traction, heat flux and variable material properties are described schematically, and their influence on the wave propagation is calculated. It is shown that the amplitude of oscillation in a functionally graded hyperelastic medium is less than that of a medium with constant properties. The results also show that the wave travels through the medium faster than the FGM. Moreover, the modified Fourier law of heat conduction is applied and the impact of enhanced heat conduction model on the thermo-hyperelastic responses is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
8.
go back to reference Korba, A.G., Barkey, M.E.: New model for hyper-elastic materials behavior with an application on natural rubber. In: ASME 2017 12th international manufacturing science and engineering conference, p 10. https://doi.org/https://doi.org/10.1115/MSEC2017-2792 Korba, A.G., Barkey, M.E.: New model for hyper-elastic materials behavior with an application on natural rubber. In: ASME 2017 12th international manufacturing science and engineering conference, p 10. https://​doi.​org/​https://​doi.​org/​10.​1115/​MSEC2017-2792
25.
go back to reference Hamkar, A.W., Hartmann, S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. (2012) Hamkar, A.W., Hartmann, S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. (2012)
26.
go back to reference S. Hartmann, Comparison of the multiplicative decompositions in finite strain thermoelasticity. Technische Universität Clausthal Leibnizstraße 32: 38678 Clausthal-Zellerfeld, Germany. (2012) S. Hartmann, Comparison of the multiplicative decompositions in finite strain thermoelasticity. Technische Universität Clausthal Leibnizstraße 32: 38678 Clausthal-Zellerfeld, Germany. (2012)
31.
go back to reference Hamkar, A.W., Hartmann, S.: Theoretical and numerical aspects in weak compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. 50, 3–22 (2012) Hamkar, A.W., Hartmann, S.: Theoretical and numerical aspects in weak compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. 50, 3–22 (2012)
33.
go back to reference Mirparizi, M., Fotuhi, A.R.: Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain. Phys. A 537, 122755 (2020)MathSciNetCrossRef Mirparizi, M., Fotuhi, A.R.: Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain. Phys. A 537, 122755 (2020)MathSciNetCrossRef
38.
go back to reference Mirparizi, M., Fotuhi, A.R., Shariyat, M.: Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain. J. Thermal Anal. Calorim. 139, 2309–2320 (2020)CrossRef Mirparizi, M., Fotuhi, A.R., Shariyat, M.: Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain. J. Thermal Anal. Calorim. 139, 2309–2320 (2020)CrossRef
40.
go back to reference Kumar, K.T., Railkar, S.B.: A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal-structural analysis. Comput. Struct. 26, 655–665 (1987)CrossRef Kumar, K.T., Railkar, S.B.: A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal-structural analysis. Comput. Struct. 26, 655–665 (1987)CrossRef
41.
go back to reference Shaw, S.: A thermodynamic analysis of an enhanced theory of heat conduction model: Extended influence of finite strain and heat flux. Int. J. Eng. Sci. 152, 103277 (2020)MathSciNetCrossRef Shaw, S.: A thermodynamic analysis of an enhanced theory of heat conduction model: Extended influence of finite strain and heat flux. Int. J. Eng. Sci. 152, 103277 (2020)MathSciNetCrossRef
Metadata
Title
The nonlinear thermo-hyperelasticity wave propagation analysis of near-incompressible functionally graded medium under mechanical and thermal loadings
Authors
Farshad Shakeriaski
Maryam Ghodrat
Juan Escobedo-Diaz
Masud Behnia
Publication date
27-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 7/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01951-z

Other articles of this Issue 7/2021

Archive of Applied Mechanics 7/2021 Go to the issue

Premium Partners