Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

28-06-2019

The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the Wasserstein Distance

Authors: Adrian M. Ruf, Espen Sande, Susanne Solem

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1994, Nessyahu, Tadmor and Tassa studied convergence rates of monotone finite volume approximations of conservation laws. For compactly supported, \(\mathrm {Lip}^+\)-bounded initial data they showed a first-order convergence rate in the Wasserstein distance. Our main result is to prove that this rate is optimal. We further provide numerical evidence indicating that the rate in the case of \(\mathrm {Lip}^+\)-unbounded initial data is worse than first-order.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bakhvalov, N.S.: Estimation of the error of numerical integration of a first-order quasilinear equation. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1(5), 771–783 (1961) Bakhvalov, N.S.: Estimation of the error of numerical integration of a first-order quasilinear equation. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1(5), 771–783 (1961)
2.
go back to reference Fjordholm, U.S., Solem, S.: Second-order convergence of monotone schemes for conservation laws. SIAM J. Numer. Anal. 54(3), 1920–1945 (2016)MathSciNetMATHCrossRef Fjordholm, U.S., Solem, S.: Second-order convergence of monotone schemes for conservation laws. SIAM J. Numer. Anal. 54(3), 1920–1945 (2016)MathSciNetMATHCrossRef
3.
go back to reference Friedman, A.: Partial Differential Equations, original edn. Robert E. Krieger Publishing Co., Huntington, NY (1976) Friedman, A.: Partial Differential Equations, original edn. Robert E. Krieger Publishing Co., Huntington, NY (1976)
4.
go back to reference Harabetian, E.: Rarefactions and large time behavior for parabolic equations and monotone schemes. Commun. Math. Phys. 114(4), 527–536 (1988)MathSciNetMATHCrossRef Harabetian, E.: Rarefactions and large time behavior for parabolic equations and monotone schemes. Commun. Math. Phys. 114(4), 527–536 (1988)MathSciNetMATHCrossRef
5.
go back to reference Harten, A., Hyman, J.M., Lax, P.D.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29(3), 297–322 (1976). (With an appendix by B. Keyfitz) MathSciNetMATHCrossRef Harten, A., Hyman, J.M., Lax, P.D.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29(3), 297–322 (1976). (With an appendix by B. Keyfitz) MathSciNetMATHCrossRef
6.
go back to reference Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)CrossRef Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)CrossRef
7.
go back to reference Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29(6), 1505–1519 (1992)MathSciNetMATHCrossRef Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29(6), 1505–1519 (1992)MathSciNetMATHCrossRef
8.
9.
go back to reference Nessyahu, H., Tassa, T.: Convergence rate of approximate solutions to conservation laws with initial rarefactions. SIAM J. Numer. Anal. 31(3), 628–654 (1994)MathSciNetMATHCrossRef Nessyahu, H., Tassa, T.: Convergence rate of approximate solutions to conservation laws with initial rarefactions. SIAM J. Numer. Anal. 31(3), 628–654 (1994)MathSciNetMATHCrossRef
10.
go back to reference Şabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34(6), 2306–2318 (1997)MathSciNetMATHCrossRef Şabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34(6), 2306–2318 (1997)MathSciNetMATHCrossRef
11.
go back to reference Solem, S.: Convergence rates of the front tracking method for conservation laws in the Wasserstein distances. SIAM J. Numer. Anal. 56(6), 3648–3666 (2018)MathSciNetMATHCrossRef Solem, S.: Convergence rates of the front tracking method for conservation laws in the Wasserstein distances. SIAM J. Numer. Anal. 56(6), 3648–3666 (2018)MathSciNetMATHCrossRef
12.
go back to reference Tadmor, E.: Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28(4), 891–906 (1991)MathSciNetMATHCrossRef Tadmor, E.: Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28(4), 891–906 (1991)MathSciNetMATHCrossRef
13.
go back to reference Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s \(O(\sqrt{\Delta x})\) \(L^1\)-error estimate for monotone difference schemes. Math. Comput. 64(210), 581–589 (1995)MATHMathSciNet Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s \(O(\sqrt{\Delta x})\) \(L^1\)-error estimate for monotone difference schemes. Math. Comput. 64(210), 581–589 (1995)MATHMathSciNet
14.
go back to reference Teng, Z.-H., Zhang, P.: Optimal \(L^1\)-rate of convergence for the viscosity method and monotone scheme to piecewise constant solutions with shocks. SIAM J. Numer. Anal. 34(3), 959–978 (1997)MathSciNetMATHCrossRef Teng, Z.-H., Zhang, P.: Optimal \(L^1\)-rate of convergence for the viscosity method and monotone scheme to piecewise constant solutions with shocks. SIAM J. Numer. Anal. 34(3), 959–978 (1997)MathSciNetMATHCrossRef
15.
go back to reference Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)MATH Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)MATH
16.
go back to reference Wang, W.-C.: On \(L^1\) convergence rate of viscous and numerical approximate solutions of genuinely nonlinear scalar conservation laws. SIAM J. Math. Anal. 30(1), 38–52 (1999)MathSciNetMATHCrossRef Wang, W.-C.: On \(L^1\) convergence rate of viscous and numerical approximate solutions of genuinely nonlinear scalar conservation laws. SIAM J. Math. Anal. 30(1), 38–52 (1999)MathSciNetMATHCrossRef
Metadata
Title
The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the Wasserstein Distance
Authors
Adrian M. Ruf
Espen Sande
Susanne Solem
Publication date
28-06-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00996-1

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner