Skip to main content
Top
Published in: Journal of Materials Science 12/2018

13-03-2018 | Biomaterials

The oxidase-like activity of hemin encapsulated by single-ring GroEL mutant and its application for colorimetric detection

Authors: Xiaoqiang Wang, Baomei Xu, Zhenzhen Liu

Published in: Journal of Materials Science | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Supramolecular anchoring of metalloporphyrins in a protein is an attractive approach to the generation of artificial enzymes. Here, we employ the hydrophobic nanocage of single-ring mutant of bacterial GroEL protein for this purpose. We found that multiple monomeric hemin cofactors can be efficiently loaded into the protein nanocage. The as-prepared biohybrid possessed an oxidase-like catalytic activity and followed the typical Michaelis–Menten kinetics and a ping-pong mechanism in the H2O2-mediated oxidation of model substrates. In comparison with natural peroxidase, the artificial enzyme exhibited higher affinity for the model substrate. A simple and sensitive colorimetric method for the quantitative detection of H2O2 and glucose was also developed based on the artificial enzyme, with the detection limits determined to be 3.0 μM for H2O2 and 5.0 μM for glucose, respectively. The protein nanocage-based artificial enzyme is very flexible and is envisioned to be adapted readily for binding other metal complexes and catalysis of other reactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Durrenberger M, Ward TR (2014) Recent achievments in the design and engineering of artificial metalloenzymes. Curr Opin Chem Biol 19:99–106CrossRef Durrenberger M, Ward TR (2014) Recent achievments in the design and engineering of artificial metalloenzymes. Curr Opin Chem Biol 19:99–106CrossRef
2.
go back to reference Hocker B (2012) Protein design: a metalloenzyme reloaded. Nat Chem Biol 8(3):224–225CrossRef Hocker B (2012) Protein design: a metalloenzyme reloaded. Nat Chem Biol 8(3):224–225CrossRef
3.
go back to reference Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537(7622):661–665CrossRef Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537(7622):661–665CrossRef
4.
go back to reference Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105CrossRef Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105CrossRef
5.
go back to reference Yu FT, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Protein design: toward functional metalloenzymes. Chem Rev 114(7):3495–3578CrossRef Yu FT, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Protein design: toward functional metalloenzymes. Chem Rev 114(7):3495–3578CrossRef
6.
go back to reference Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef
7.
go back to reference Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509CrossRef Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509CrossRef
8.
go back to reference Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Shukla R, Bhargava SK (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4(22):3874–3885CrossRef Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Shukla R, Bhargava SK (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4(22):3874–3885CrossRef
9.
go back to reference Li JN, Liu WQ, Wu XC, Gao XF (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44CrossRef Li JN, Liu WQ, Wu XC, Gao XF (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44CrossRef
10.
go back to reference Liu J, Xin XY, Zhou H, Zhang SS (2015) A ternary composite based on graphene, hemin, and gold nanorods with high catalytic activity for the detection of cell-surface glycan expression. Chem Eur J 21(5):1908–1914CrossRef Liu J, Xin XY, Zhou H, Zhang SS (2015) A ternary composite based on graphene, hemin, and gold nanorods with high catalytic activity for the detection of cell-surface glycan expression. Chem Eur J 21(5):1908–1914CrossRef
11.
go back to reference Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, Fan CH (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12):7451–7458CrossRef Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, Fan CH (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12):7451–7458CrossRef
12.
go back to reference Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535CrossRef Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535CrossRef
13.
go back to reference Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210CrossRef Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210CrossRef
14.
go back to reference Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621CrossRef Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621CrossRef
15.
go back to reference Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Edit 54(24):7176–7180CrossRef Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Edit 54(24):7176–7180CrossRef
16.
go back to reference Tian T, Ai LH, Liu XM, Li LL, Li J, Jiang J (2015) Synthesis of hierarchical FeWO4 architectures with {100}-faceted nanosheet assemblies as a robust biomimetic catalyst. Ind Eng Chem Res 54(4):1171–1178CrossRef Tian T, Ai LH, Liu XM, Li LL, Li J, Jiang J (2015) Synthesis of hierarchical FeWO4 architectures with {100}-faceted nanosheet assemblies as a robust biomimetic catalyst. Ind Eng Chem Res 54(4):1171–1178CrossRef
17.
go back to reference Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Edit 50(50):11994–11998CrossRef Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Edit 50(50):11994–11998CrossRef
18.
go back to reference Albada HB, Golub E, Willner I (2016) Rational design of supramolecular hemin/G-quadruplex-dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci 7(5):3092–3101CrossRef Albada HB, Golub E, Willner I (2016) Rational design of supramolecular hemin/G-quadruplex-dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci 7(5):3092–3101CrossRef
19.
go back to reference Mahy JP, Marechal JD, Ricoux R (2015) From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun 51(13):2476–2494CrossRef Mahy JP, Marechal JD, Ricoux R (2015) From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun 51(13):2476–2494CrossRef
20.
go back to reference Qu R, Shen LL, Chai ZH, Jing C, Zhang YF, An YL, Shi LQ (2014) Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis. ACS Appl Mater Int 6(21):19207–19216CrossRef Qu R, Shen LL, Chai ZH, Jing C, Zhang YF, An YL, Shi LQ (2014) Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis. ACS Appl Mater Int 6(21):19207–19216CrossRef
21.
go back to reference Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Edit 46(23):4285–4289CrossRef Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Edit 46(23):4285–4289CrossRef
22.
go back to reference Bos J, Browne WR, Driessen AJM, Roelfes G (2015) Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J Am Chem Soc 137(31):9796–9799CrossRef Bos J, Browne WR, Driessen AJM, Roelfes G (2015) Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J Am Chem Soc 137(31):9796–9799CrossRef
23.
go back to reference Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41(1):62–76CrossRef Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41(1):62–76CrossRef
24.
go back to reference Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99(4):1611–1625CrossRef Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99(4):1611–1625CrossRef
25.
go back to reference Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389CrossRef Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389CrossRef
26.
go back to reference Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042CrossRef Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042CrossRef
27.
go back to reference Witus LS, Francis MB (2011) Using synthetically modified proteins to make new materials. Acc Chem Res 44(9):774–783CrossRef Witus LS, Francis MB (2011) Using synthetically modified proteins to make new materials. Acc Chem Res 44(9):774–783CrossRef
28.
go back to reference Jutz G, van Rijn P, Miranda BS, Boker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701CrossRef Jutz G, van Rijn P, Miranda BS, Boker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701CrossRef
29.
go back to reference Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185CrossRef Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185CrossRef
30.
go back to reference Fiedler JD, Brown SD, Lau JL, Finn MG (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Edit 49(50):9648–9651CrossRef Fiedler JD, Brown SD, Lau JL, Finn MG (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Edit 49(50):9648–9651CrossRef
31.
go back to reference Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83(4):577–587CrossRef Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83(4):577–587CrossRef
32.
go back to reference Wang XQ, Wang C, Pan MH, Wei JT, Jiang FP, Lu RS, Liu X, Huang YH, Huang F (2017) Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl Mater Int 9(30):25387–25396CrossRef Wang XQ, Wang C, Pan MH, Wei JT, Jiang FP, Lu RS, Liu X, Huang YH, Huang F (2017) Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl Mater Int 9(30):25387–25396CrossRef
33.
go back to reference Chen Q, Chen J, Gao CJ, Zhang ML, Chen JY, Qiu HD (2015) Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 140(8):2857–2863CrossRef Chen Q, Chen J, Gao CJ, Zhang ML, Chen JY, Qiu HD (2015) Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 140(8):2857–2863CrossRef
34.
go back to reference Jurow M, Schuckman AE, Batteas JD, Drain CM (2010) Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 254(19–20):2297–2310CrossRef Jurow M, Schuckman AE, Batteas JD, Drain CM (2010) Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 254(19–20):2297–2310CrossRef
35.
go back to reference Ryabova ES, Dikiy A, Hesslein AE, Bjerrum MJ, Ciurli S, Nordlander E (2004) Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. J Biol Inorg Chem 9(4):385–395CrossRef Ryabova ES, Dikiy A, Hesslein AE, Bjerrum MJ, Ciurli S, Nordlander E (2004) Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. J Biol Inorg Chem 9(4):385–395CrossRef
36.
go back to reference Hitomi Y, Hiramatsu K, Arakawa K, Takeyasu T, Hata M, Kodera M (2013) An iron(III) tetradentate monoamido complex as a nonheme iron-based peroxidase mimetic. Dalton Trans 42(36):12878–12882CrossRef Hitomi Y, Hiramatsu K, Arakawa K, Takeyasu T, Hata M, Kodera M (2013) An iron(III) tetradentate monoamido complex as a nonheme iron-based peroxidase mimetic. Dalton Trans 42(36):12878–12882CrossRef
37.
go back to reference Porter DJ, Bright HJ (1983) The mechanism of oxidation of nitroalkanes by horseradish peroxidase. J Biol Chem 258(16):9913–9924 Porter DJ, Bright HJ (1983) The mechanism of oxidation of nitroalkanes by horseradish peroxidase. J Biol Chem 258(16):9913–9924
38.
go back to reference Cai SF, Han QS, Qi C, Lian Z, Jia XH, Yang R, Wang C (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8(6):3685–3693CrossRef Cai SF, Han QS, Qi C, Lian Z, Jia XH, Yang R, Wang C (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8(6):3685–3693CrossRef
39.
go back to reference Zhao K, Gu W, Zheng SS, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52CrossRef Zhao K, Gu W, Zheng SS, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52CrossRef
40.
go back to reference Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862CrossRef Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862CrossRef
41.
go back to reference Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697CrossRef Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697CrossRef
42.
go back to reference Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542CrossRef Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542CrossRef
43.
go back to reference Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768CrossRef Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768CrossRef
44.
go back to reference Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254CrossRef Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254CrossRef
45.
go back to reference Zhang LH, Zhai YM, Gao N, Wen D, Dong SJ (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526CrossRef Zhang LH, Zhai YM, Gao N, Wen D, Dong SJ (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526CrossRef
46.
go back to reference Chen Q, Liu ML, Zhao JN, Peng X, Chen XJ, Mi NX, Yin BD, Li HT, Zhang YY, Yao SZ (2014) Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem Commun 50(51):6771–6774CrossRef Chen Q, Liu ML, Zhao JN, Peng X, Chen XJ, Mi NX, Yin BD, Li HT, Zhang YY, Yao SZ (2014) Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem Commun 50(51):6771–6774CrossRef
Metadata
Title
The oxidase-like activity of hemin encapsulated by single-ring GroEL mutant and its application for colorimetric detection
Authors
Xiaoqiang Wang
Baomei Xu
Zhenzhen Liu
Publication date
13-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2215-6

Other articles of this Issue 12/2018

Journal of Materials Science 12/2018 Go to the issue

Premium Partners