Skip to main content
Top
Published in: Wireless Networks 1/2023

01-09-2022 | Original Paper

The recognition of multi-components signals based on semantic segmentation

Authors: Changbo Hou, Dingyi Fu, Lijie Hua, Yun Lin, Guowei Liu, Zhichao Zhou

Published in: Wireless Networks | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The separation and recognition of radar signals are crucial in a complex electromagnetic environment, especially multi-component radar signals. However, most existing algorithms can only recognize dual-component signals. An algorithm based on semantic segmentation is proposed to separate the signal in the time-frequency domain and classify multi-component radar signals. An improved Cohen class time-frequency distribution (CTFD) is used to represent the one-dimensional signals as time-frequency images (TFIs). A convolutional denoising autoencoder (CDAE) is established to filter the TFIs. Three semantic segmentation networks are used, a fully convolutional neural network (FCN-8s), U-Net, and DeepLab V3+. The method can separate and recognize signals simultaneously and is applied to aliased signals composed of 1-4 components. The simulation results show that the proposed method provides excellent performance for separating and recognizing multi-component signals. At a signal-to-noise ratio (SNR) of 0 dB, the accuracies of the aliased radar signals with 1-4 components are 100%, 100%, 96.67%, and 93.75%, respectively. The separation and recognition algorithm can be adapted to other signal modulation types.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang, C., Feng, L., Zhang, H., He, S., & Shi, Z. (2018). A novel data fusion algorithm to combat false data injection attacks in networked radar systems. IEEE Transactions on Signal and Information Processing over Networks, 4(1), 125–136.MathSciNetCrossRef Yang, C., Feng, L., Zhang, H., He, S., & Shi, Z. (2018). A novel data fusion algorithm to combat false data injection attacks in networked radar systems. IEEE Transactions on Signal and Information Processing over Networks, 4(1), 125–136.MathSciNetCrossRef
2.
go back to reference Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y.-D. (2018). An amateur drone surveillance system based on the cognitive internet of things. IEEE Communications Magazine, 56(1), 29–35.CrossRef Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y.-D. (2018). An amateur drone surveillance system based on the cognitive internet of things. IEEE Communications Magazine, 56(1), 29–35.CrossRef
3.
go back to reference Dong, G., & Kuang, G. (2015). Classification on the monogenic scale space: application to target recognition in SAR image. IEEE Transactions on Image Processing, 24(8), 2527–2539.MathSciNetCrossRefMATH Dong, G., & Kuang, G. (2015). Classification on the monogenic scale space: application to target recognition in SAR image. IEEE Transactions on Image Processing, 24(8), 2527–2539.MathSciNetCrossRefMATH
4.
go back to reference Zheng, J., & Lv, Y. (2018). Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Transactions on Vehicular Technology, 67(9), 8192–8204.CrossRef Zheng, J., & Lv, Y. (2018). Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Transactions on Vehicular Technology, 67(9), 8192–8204.CrossRef
5.
go back to reference Lin, Y., Tu, Y., & Dou, Z. (2020). An improved neural network pruning technology for automatic modulation classification in edge devices. IEEE Transactions on Vehicular Technology, 69(5), 5703–5706.CrossRef Lin, Y., Tu, Y., & Dou, Z. (2020). An improved neural network pruning technology for automatic modulation classification in edge devices. IEEE Transactions on Vehicular Technology, 69(5), 5703–5706.CrossRef
6.
go back to reference Wang, Y., Yang, J., Liu, M., & Gui, G. (2020). Lightamc: Lightweight automatic modulation classification via deep learning and compressive sensing. IEEE Transactions on Vehicular Technology, 69(3), 3491–3495.CrossRef Wang, Y., Yang, J., Liu, M., & Gui, G. (2020). Lightamc: Lightweight automatic modulation classification via deep learning and compressive sensing. IEEE Transactions on Vehicular Technology, 69(3), 3491–3495.CrossRef
7.
go back to reference Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y.-D. (2018). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.CrossRef Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y.-D. (2018). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.CrossRef
8.
go back to reference Lin, Y., Tu, Y., Dou, Z., Chen, L., & Mao, S. (2020). Contour stella image and deep learning for signal recognition in the physical layer. IEEE Transactions on Cognitive Communications and Networking, 7(1), 34–46.CrossRef Lin, Y., Tu, Y., Dou, Z., Chen, L., & Mao, S. (2020). Contour stella image and deep learning for signal recognition in the physical layer. IEEE Transactions on Cognitive Communications and Networking, 7(1), 34–46.CrossRef
9.
go back to reference Tu, Y., Lin, Y., Hou, C., & Mao, S. (2020). Complex-valued networks for automatic modulation classification. IEEE Transactions on Vehicular Technology, 69(9), 10085–10089.CrossRef Tu, Y., Lin, Y., Hou, C., & Mao, S. (2020). Complex-valued networks for automatic modulation classification. IEEE Transactions on Vehicular Technology, 69(9), 10085–10089.CrossRef
10.
go back to reference Lin, Y., Zhu, X., Zheng, Z., Dou, Z., & Zhou, R. (2019). The individual identification method of wireless device based on dimensionality reduction and machine learning. The Journal of Supercomputing, 75(6), 3010–3027.CrossRef Lin, Y., Zhu, X., Zheng, Z., Dou, Z., & Zhou, R. (2019). The individual identification method of wireless device based on dimensionality reduction and machine learning. The Journal of Supercomputing, 75(6), 3010–3027.CrossRef
11.
go back to reference Tu, Y., Lin, Y., Wang, J., & Kim, J.-U. (2018). Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Computers Materials Continua, 55(2), 243–254. Tu, Y., Lin, Y., Wang, J., & Kim, J.-U. (2018). Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Computers Materials Continua, 55(2), 243–254.
12.
go back to reference Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2018). Multimodal machine learning: a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443.CrossRef Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2018). Multimodal machine learning: a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443.CrossRef
13.
go back to reference Zhang, Z., Wang, C., Gan, C., Sun, S., & Wang, M. (2019). Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Transactions on Signal and Information Processing over Networks, 5(3), 469–478.MathSciNetCrossRef Zhang, Z., Wang, C., Gan, C., Sun, S., & Wang, M. (2019). Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Transactions on Signal and Information Processing over Networks, 5(3), 469–478.MathSciNetCrossRef
14.
go back to reference Ni, X., Wang, H., Meng, F., Hu, J., & Tong, C. (2021). LPI radar waveform recognition based on multi-resolution deep feature fusion. IEEE Access, 9, 26138–26146.CrossRef Ni, X., Wang, H., Meng, F., Hu, J., & Tong, C. (2021). LPI radar waveform recognition based on multi-resolution deep feature fusion. IEEE Access, 9, 26138–26146.CrossRef
15.
go back to reference Gao, J., Shen, L., & Gao, L. (2019). Modulation recognition for radar emitter signals based on convolutional neural network and fusion features. Transactions on Emerging Telecommunications Technologies, 30(12), e3612.CrossRef Gao, J., Shen, L., & Gao, L. (2019). Modulation recognition for radar emitter signals based on convolutional neural network and fusion features. Transactions on Emerging Telecommunications Technologies, 30(12), e3612.CrossRef
17.
go back to reference Liu, Z., Li, L., Xu, H., & Li, H.: A method for recognition and classification for hybrid signals based on deep convolutional neural network. In: 2018 international conference on electronics technology (ICET), pp. 325–330 (2018). IEEE Liu, Z., Li, L., Xu, H., & Li, H.: A method for recognition and classification for hybrid signals based on deep convolutional neural network. In: 2018 international conference on electronics technology (ICET), pp. 325–330 (2018). IEEE
18.
go back to reference Qu, Z., Hou, C., Hou, C., & Wang, W. (2020). Radar signal intra-pulse modulation recognition based on convolutional neural network and deep q-learning network. IEEE Access, 8, 49125–49136.CrossRef Qu, Z., Hou, C., Hou, C., & Wang, W. (2020). Radar signal intra-pulse modulation recognition based on convolutional neural network and deep q-learning network. IEEE Access, 8, 49125–49136.CrossRef
19.
go back to reference Cheng, Y., Shao, J., Zhao, Y., Liu, S., & Malekian, R. (2019). An improved separation method of multi-components signal for sensing based on time-frequency representation. Review of Scientific Instruments, 90(6), 064901.CrossRef Cheng, Y., Shao, J., Zhao, Y., Liu, S., & Malekian, R. (2019). An improved separation method of multi-components signal for sensing based on time-frequency representation. Review of Scientific Instruments, 90(6), 064901.CrossRef
20.
go back to reference Chen, S., Dong, X., Xing, G., Peng, Z., Zhang, W., & Meng, G. (2017). Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sensors Journal, 17(18), 5994–6005.CrossRef Chen, S., Dong, X., Xing, G., Peng, Z., Zhang, W., & Meng, G. (2017). Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sensors Journal, 17(18), 5994–6005.CrossRef
21.
go back to reference Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mechanical Systems and Signal Processing, 38(1), 165–205.CrossRef Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mechanical Systems and Signal Processing, 38(1), 165–205.CrossRef
22.
go back to reference Yu, J., & Zhou, X. (2020). One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis. IEEE Transactions on Industrial Informatics, 16(10), 6347–6358.CrossRef Yu, J., & Zhou, X. (2020). One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis. IEEE Transactions on Industrial Informatics, 16(10), 6347–6358.CrossRef
23.
go back to reference Lundén, J., & Koivunen, V. (2007). Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 1(1), 124–136.CrossRef Lundén, J., & Koivunen, V. (2007). Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 1(1), 124–136.CrossRef
24.
go back to reference Qu, Z., Mao, X., & Deng, Z. (2018). Radar signal intra-pulse modulation recognition based on convolutional neural network. IEEE Access, 6, 43874–43884.CrossRef Qu, Z., Mao, X., & Deng, Z. (2018). Radar signal intra-pulse modulation recognition based on convolutional neural network. IEEE Access, 6, 43874–43884.CrossRef
25.
go back to reference Zhang, Y., Xiao, J., Peng, J., Ding, Y., Liu, J., Guo, Z., & Zong, X. (2018). Kernel wiener filtering model with low-rank approximation for image denoising. Information Sciences, 462, 402–416.MathSciNetCrossRefMATH Zhang, Y., Xiao, J., Peng, J., Ding, Y., Liu, J., Guo, Z., & Zong, X. (2018). Kernel wiener filtering model with low-rank approximation for image denoising. Information Sciences, 462, 402–416.MathSciNetCrossRefMATH
26.
go back to reference Wu, Q., Li, Y., & Lin, Y. (2017). The application of nonlocal total variation in image denoising for mobile transmission. Multimedia Tools and Applications, 76(16), 17179–17191.CrossRef Wu, Q., Li, Y., & Lin, Y. (2017). The application of nonlocal total variation in image denoising for mobile transmission. Multimedia Tools and Applications, 76(16), 17179–17191.CrossRef
28.
go back to reference Long, J., Shelhamer, E., & Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., & Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015)
29.
go back to reference Ronneberger, O., Fischer, & P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, & P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241 (2015). Springer
30.
go back to reference Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018) Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018)
31.
go back to reference Simonyan, K., & Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., & Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
32.
go back to reference Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017) Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:​1706.​05587 (2017)
33.
go back to reference Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988 (2017) Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988 (2017)
34.
go back to reference Pan, Z., Wang, S., Zhu, M., & Li, Y. (2020). Automatic waveform recognition of overlapping LPI radar signals based on multi-instance multi-label learning. IEEE Signal Processing Letters, 27, 1275–1279.CrossRef Pan, Z., Wang, S., Zhu, M., & Li, Y. (2020). Automatic waveform recognition of overlapping LPI radar signals based on multi-instance multi-label learning. IEEE Signal Processing Letters, 27, 1275–1279.CrossRef
35.
go back to reference Si, W., Wan, C., & Zhang, C. (2021). Towards an accurate radar waveform recognition algorithm based on dense CNN. Multimedia Tools and Applications, 80(2), 1779–1792.CrossRef Si, W., Wan, C., & Zhang, C. (2021). Towards an accurate radar waveform recognition algorithm based on dense CNN. Multimedia Tools and Applications, 80(2), 1779–1792.CrossRef
36.
go back to reference Lin, Y., Zhao, H., Ma, X., Tu, Y., & Wang, M. (2020). Adversarial attacks in modulation recognition with convolutional neural networks. IEEE Transactions on Reliability, 70(1), 389–401.CrossRef Lin, Y., Zhao, H., Ma, X., Tu, Y., & Wang, M. (2020). Adversarial attacks in modulation recognition with convolutional neural networks. IEEE Transactions on Reliability, 70(1), 389–401.CrossRef
37.
go back to reference Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2020). A data authentication scheme for UAV ad hoc network communication. The Journal of Supercomputing, 76(6), 4041–4056.CrossRef Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2020). A data authentication scheme for UAV ad hoc network communication. The Journal of Supercomputing, 76(6), 4041–4056.CrossRef
Metadata
Title
The recognition of multi-components signals based on semantic segmentation
Authors
Changbo Hou
Dingyi Fu
Lijie Hua
Yun Lin
Guowei Liu
Zhichao Zhou
Publication date
01-09-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 1/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03086-7

Other articles of this Issue 1/2023

Wireless Networks 1/2023 Go to the issue