Skip to main content
Top
Published in: Neural Computing and Applications 8/2018

17-01-2017 | Original Article

The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs

Authors: Omar Abu Arqub, Hasan Rashaideh

Published in: Neural Computing and Applications | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many problems arising in different fields of sciences and engineering can be reduced, by applying some appropriate discretization, either to a system of integrodifferential algebraic equations or to a sequence of such systems. The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of integrodifferential algebraic systems of temporal two-point boundary value problems. Two extended inner product spaces W[0, 1] and H[0, 1] are constructed in which the boundary conditions of the systems are satisfied, while two smooth kernel functions R t (s) and r t (s) are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, PhiladelphiaCrossRef Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, PhiladelphiaCrossRef
2.
go back to reference Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations (classics in applied mathematics). SIAM, PhiladelphiaMATH Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations (classics in applied mathematics). SIAM, PhiladelphiaMATH
3.
go back to reference Hairer E, Wanner G (2004) Solving ordinary differential equations II: stiff and differential algebraic problems (series in computational mathematics). Springer, BerlinMATH Hairer E, Wanner G (2004) Solving ordinary differential equations II: stiff and differential algebraic problems (series in computational mathematics). Springer, BerlinMATH
4.
go back to reference Kunkel P, Mehrmann V (2006) Differential-algebraic equations: analysis and numerical solution (EMS textbooks in mathematics). European Mathematical Society, SwitzerlandCrossRef Kunkel P, Mehrmann V (2006) Differential-algebraic equations: analysis and numerical solution (EMS textbooks in mathematics). European Mathematical Society, SwitzerlandCrossRef
5.
go back to reference Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis (differential-algebraic equations forum). Springer, BerlinCrossRef Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis (differential-algebraic equations forum). Springer, BerlinCrossRef
6.
go back to reference Pytlak R (1999) Numerical methods for optimal control problems with state constraints. Springer-Verlag, BerlinCrossRef Pytlak R (1999) Numerical methods for optimal control problems with state constraints. Springer-Verlag, BerlinCrossRef
7.
go back to reference Kubicek M, Hlavacek V (2008) Numerical solution of nonlinear boundary value problems with applications. Dover Publications, New YorkMATH Kubicek M, Hlavacek V (2008) Numerical solution of nonlinear boundary value problems with applications. Dover Publications, New YorkMATH
8.
go back to reference Lawder MT, Ramadesigan V, Suthar B, Subramanian VR (2015) Extending explicit and linearly implicit ODE solvers for index-1 DAEs. Comput Chem Eng 82:283–292CrossRef Lawder MT, Ramadesigan V, Suthar B, Subramanian VR (2015) Extending explicit and linearly implicit ODE solvers for index-1 DAEs. Comput Chem Eng 82:283–292CrossRef
9.
go back to reference Celik E, Bayram M (2004) Numerical solution of differential-algebraic equation systems and applications. Appl Math Comput 154:405–413MathSciNetMATH Celik E, Bayram M (2004) Numerical solution of differential-algebraic equation systems and applications. Appl Math Comput 154:405–413MathSciNetMATH
10.
go back to reference Huang J, Jia J, Minion M (2007) Arbitrary order Krylov deferred correction methods for differential algebraic equations. J Comput Phys 221:739–760MathSciNetCrossRef Huang J, Jia J, Minion M (2007) Arbitrary order Krylov deferred correction methods for differential algebraic equations. J Comput Phys 221:739–760MathSciNetCrossRef
11.
go back to reference Celik E, Bayram M (2005) The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). J Franklin Inst 342:1–6MathSciNetCrossRef Celik E, Bayram M (2005) The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). J Franklin Inst 342:1–6MathSciNetCrossRef
12.
go back to reference Celik E (2004) On the numerical solution of chemical differential-algebraic equations by Pade series. Appl Math Comput 153:13–17MathSciNetMATH Celik E (2004) On the numerical solution of chemical differential-algebraic equations by Pade series. Appl Math Comput 153:13–17MathSciNetMATH
13.
go back to reference Celik E, Bayram M (2003) Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Appl Math Comput 137:57–65MathSciNetMATH Celik E, Bayram M (2003) Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Appl Math Comput 137:57–65MathSciNetMATH
14.
go back to reference Ascher UM, Petzold LR (1991) Projected implicit Runge–Kutta methods for differential-algebraic equations. SIAM J Numer Anal 28:1097–1120MathSciNetCrossRef Ascher UM, Petzold LR (1991) Projected implicit Runge–Kutta methods for differential-algebraic equations. SIAM J Numer Anal 28:1097–1120MathSciNetCrossRef
15.
go back to reference Trent A, Venkataraman R, Doman D (2004) Trajectory generation using a modified simple shooting method In: Aerospace Conference, Proceedings: 2004 IEEE, vol 4, pp 2723–2729 Trent A, Venkataraman R, Doman D (2004) Trajectory generation using a modified simple shooting method In: Aerospace Conference, Proceedings: 2004 IEEE, vol 4, pp 2723–2729
16.
go back to reference Holsapple RW, Venkataraman R, Doman D (2004) New, fast numerical method for solving two-point boundary-value problems. J Guid Control Dyn 27:301–304CrossRef Holsapple RW, Venkataraman R, Doman D (2004) New, fast numerical method for solving two-point boundary-value problems. J Guid Control Dyn 27:301–304CrossRef
17.
go back to reference Zhao J (2007) Highly accurate compact mixed methods for two point boundary value problems. Appl Math Comput 188:1402–1418MathSciNetMATH Zhao J (2007) Highly accurate compact mixed methods for two point boundary value problems. Appl Math Comput 188:1402–1418MathSciNetMATH
18.
go back to reference Cash JR, Wright MH (1991) A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J Sci Stat Comput 12:971–989MathSciNetCrossRef Cash JR, Wright MH (1991) A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J Sci Stat Comput 12:971–989MathSciNetCrossRef
19.
go back to reference Cash JR, Moore DR, Sumarti N, Daele MV (2003) A highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problems. J Comput Appl Math 155:339–358MathSciNetCrossRef Cash JR, Moore DR, Sumarti N, Daele MV (2003) A highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problems. J Comput Appl Math 155:339–358MathSciNetCrossRef
20.
go back to reference Jankowski T (2003) Samoilenko’s method to differential algebraic systems with integral boundary conditions. Appl Math Lett 16:599–608MathSciNetCrossRef Jankowski T (2003) Samoilenko’s method to differential algebraic systems with integral boundary conditions. Appl Math Lett 16:599–608MathSciNetCrossRef
21.
go back to reference Amodio P, Mazzia F (1997) Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. J Comput Appl Math 87:135–146MathSciNetCrossRef Amodio P, Mazzia F (1997) Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. J Comput Appl Math 87:135–146MathSciNetCrossRef
22.
go back to reference Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam Inform 146:231–254MathSciNetCrossRef Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam Inform 146:231–254MathSciNetCrossRef
23.
go back to reference Abu Arqub O (2016) The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci 39:4549–4562MathSciNetCrossRef Abu Arqub O (2016) The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci 39:4549–4562MathSciNetCrossRef
25.
go back to reference Kumar S, Kumar A, Baleneu D (2016) Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn 85:699–715MathSciNetCrossRef Kumar S, Kumar A, Baleneu D (2016) Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn 85:699–715MathSciNetCrossRef
26.
go back to reference Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7:1–8 Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7:1–8
27.
go back to reference Kumar S, Kumar D, Singh J (2016) Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Adv Nonlinear Anal 5:383–394MathSciNetMATH Kumar S, Kumar D, Singh J (2016) Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Adv Nonlinear Anal 5:383–394MathSciNetMATH
28.
go back to reference Alquran M, Al-Khaled K, Chattopadhyay J (2015) Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud 22:31–39MathSciNetMATH Alquran M, Al-Khaled K, Chattopadhyay J (2015) Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud 22:31–39MathSciNetMATH
29.
go back to reference Alquran M, Al-Khaled K, Sarda T, Chattopadhyay J (2015) Revisited Fisher’s equation in a new outlook: a fractional derivative approach. Phys A 438:81–93MathSciNetCrossRef Alquran M, Al-Khaled K, Sarda T, Chattopadhyay J (2015) Revisited Fisher’s equation in a new outlook: a fractional derivative approach. Phys A 438:81–93MathSciNetCrossRef
30.
go back to reference Jaradat HM, Awawdeh F, Al-Shara’ S, Alquran M, Momani S (2015) Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media. Rom J Phys 60:324–343 Jaradat HM, Awawdeh F, Al-Shara’ S, Alquran M, Momani S (2015) Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media. Rom J Phys 60:324–343
31.
go back to reference Alquran M, Jaradat HM, Al-Shara’ S, Awawdeh F (2015) A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients. Int J Nonlinear Sci Numer Simul 16:259–269MathSciNetMATH Alquran M, Jaradat HM, Al-Shara’ S, Awawdeh F (2015) A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients. Int J Nonlinear Sci Numer Simul 16:259–269MathSciNetMATH
32.
go back to reference Lin Y, Cui M, Yang L (2006) Representation of the exact solution for a kind of nonlinear partial differential equations. Appl Math Lett 19:808–813MathSciNetCrossRef Lin Y, Cui M, Yang L (2006) Representation of the exact solution for a kind of nonlinear partial differential equations. Appl Math Lett 19:808–813MathSciNetCrossRef
33.
go back to reference Zhoua Y, Cui M, Lin Y (2009) Numerical algorithm for parabolic problems with non-classical conditions. J Comput Appl Math 230:770–780MathSciNetCrossRef Zhoua Y, Cui M, Lin Y (2009) Numerical algorithm for parabolic problems with non-classical conditions. J Comput Appl Math 230:770–780MathSciNetCrossRef
34.
go back to reference Yang LH, Lin Y (2008) Reproducing kernel methods for solving linear initial-boundary-value problems. Electron J Differ Equ 2008:1–11MathSciNetMATH Yang LH, Lin Y (2008) Reproducing kernel methods for solving linear initial-boundary-value problems. Electron J Differ Equ 2008:1–11MathSciNetMATH
35.
go back to reference Wang WY, Han B, Yamamoto M (2013) Inverse heat problem of determining time-dependent source parameter in reproducing kernel space. Nonlinear Anal Real World Appl 14:875–887MathSciNetCrossRef Wang WY, Han B, Yamamoto M (2013) Inverse heat problem of determining time-dependent source parameter in reproducing kernel space. Nonlinear Anal Real World Appl 14:875–887MathSciNetCrossRef
36.
go back to reference Jiang W, Lin Y (2011) Representation of exact solution for the time fractional telegraph equation in the reproducing kernel space. Commun Nonlinear Sci Numer Simul 16:3639–3645MathSciNetCrossRef Jiang W, Lin Y (2011) Representation of exact solution for the time fractional telegraph equation in the reproducing kernel space. Commun Nonlinear Sci Numer Simul 16:3639–3645MathSciNetCrossRef
37.
go back to reference Wang Y, Du M, Tan F, Li Z, Nie T (2013) Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl Math Comput 219:5918–5925MathSciNetMATH Wang Y, Du M, Tan F, Li Z, Nie T (2013) Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl Math Comput 219:5918–5925MathSciNetMATH
38.
go back to reference Jiang W, Lin Y (2010) Approximate solution of the fractional advection–dispersion equation. Comput Phys Commun 181:557–561MathSciNetCrossRef Jiang W, Lin Y (2010) Approximate solution of the fractional advection–dispersion equation. Comput Phys Commun 181:557–561MathSciNetCrossRef
39.
go back to reference Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differ Equ 30:289–300MathSciNetCrossRef Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differ Equ 30:289–300MathSciNetCrossRef
40.
go back to reference Geng FZ, Cui M (2012) A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett 25:818–823MathSciNetCrossRef Geng FZ, Cui M (2012) A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett 25:818–823MathSciNetCrossRef
41.
go back to reference Li X, Wu B (2015) Approximate analytical solutions of nonlocal fractional boundary value problems. Appl Math Model 39:1717–1724MathSciNetCrossRef Li X, Wu B (2015) Approximate analytical solutions of nonlocal fractional boundary value problems. Appl Math Model 39:1717–1724MathSciNetCrossRef
43.
go back to reference Abu Arqub O, Al-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302CrossRef Abu Arqub O, Al-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302CrossRef
46.
go back to reference Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230MathSciNetMATH Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230MathSciNetMATH
47.
go back to reference Yang LH, Shen JH, Wang Y (2012) The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coefficients. J Comput Appl Math 236:2398–2405MathSciNetCrossRef Yang LH, Shen JH, Wang Y (2012) The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coefficients. J Comput Appl Math 236:2398–2405MathSciNetCrossRef
48.
go back to reference Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948MathSciNetMATH Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948MathSciNetMATH
49.
go back to reference Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNetMATH Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNetMATH
50.
go back to reference Geng FZ, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004MathSciNetCrossRef Geng FZ, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004MathSciNetCrossRef
51.
go back to reference Geng FZ, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105MathSciNetCrossRef Geng FZ, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105MathSciNetCrossRef
52.
go back to reference Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Model 39:5592–5597MathSciNetCrossRef Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Model 39:5592–5597MathSciNetCrossRef
Metadata
Title
The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs
Authors
Omar Abu Arqub
Hasan Rashaideh
Publication date
17-01-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2845-7

Other articles of this Issue 8/2018

Neural Computing and Applications 8/2018 Go to the issue

Premium Partner