Skip to main content
Top
Published in: Journal of Materials Science 14/2008

01-07-2008 | Reactivity of Solids

The role of protons in ionic diffusion in (Mg, Fe)O and (Mg, Fe)2SiO4

Authors: David L. Kohlstedt, Stephen J. Mackwell

Published in: Journal of Materials Science | Issue 14/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The presence of hydrogen dissolved within iron-magnesium oxides and silicates results in an increase in the rate of Fe–Mg interdiffusion. Experimental data and point defect models suggest that the increased interdiffusivity is due to an increase in the total metal-vacancy concentration through stabilization of proton-vacancy defect associates in a hydrous environment. In the case of (Mg1–xFex)O, interdiffusion experiments under hydrothermal conditions at a fluid pressure of ∼0.3 GPa yield similar dependencies of interdiffusivity on Fe-content, oxygen fugacity, and temperature as under dry conditions, but interdiffusion coefficients are a factor of ∼3 larger. These data suggest that the increased interdiffusivities in (Mg1–xFex)O result from incorporation of defect associates formed between a metal vacancy and a single proton, \(\hbox{p}_{\rm Me}^{\prime} \equiv \{\hbox{p}^{\bullet}-\hbox{V}_{\rm Me}^{\prime\prime} \}^{\prime}.\) For (Mg1–xFex)2SiO4, interdiffusion under hydrothermal conditions over a range of fluid pressures reveals a significant difference in the dependence of interdiffusivity on Fe content than obtained under dry conditions, combined with a strong dependence on water fugacity. These data indicate that the increased diffusivities in (Mg1–xFex)2SiO4 result from incorporation of defect associates involving a metal vacancy and 2 protons, \(\hbox{(2p)}_{\rm Me}^\times \equiv \{2\hbox{p}^{\bullet} -\hbox{V}_{\rm Me}^{\prime\prime} \}^{\times}.\) It is anticipated that, at higher water fugacities, Fe–Mg interdiffusion in both materials will become dominated by these latter defects and that the interdiffusivity will increase linearly with water fugacity but will be independent of oxygen fugacity and iron concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A nominally anhydrous mineral is one in which hydrogen ions are not part of the regular structure but rather exist as point defects.
 
Literature
1.
go back to reference Kohlstedt DL (2006) Water in nominally anhydrous minerals. Rev Mineral Geochem, vol 62, Mineralogical Society of America, p 377 Kohlstedt DL (2006) Water in nominally anhydrous minerals. Rev Mineral Geochem, vol 62, Mineralogical Society of America, p 377
2.
go back to reference Kohlstedt DL (2007) Treatise on geophysics, vol 2.14. Elsevier Ltd, Oxford, p 389CrossRef Kohlstedt DL (2007) Treatise on geophysics, vol 2.14. Elsevier Ltd, Oxford, p 389CrossRef
3.
go back to reference Karato S-I (2006) Earth’s deep water cycle. Geophys Monogr 168:113. Amer Geophys Union, Washington DC Karato S-I (2006) Earth’s deep water cycle. Geophys Monogr 168:113. Amer Geophys Union, Washington DC
5.
go back to reference Blacic JD (1972) Flow and fracture of rocks. Amer Geophys Union, Washington DC, p 109 Blacic JD (1972) Flow and fracture of rocks. Amer Geophys Union, Washington DC, p 109
6.
7.
go back to reference Karato S-I (1989) Rheology of solids and of the earth. Oxford University Press, Oxford, p 176 Karato S-I (1989) Rheology of solids and of the earth. Oxford University Press, Oxford, p 176
9.
go back to reference Kohlstedt DL, Mackwell SJ (1998) Zeitschrift für Physikalische Chemie 207:147CrossRef Kohlstedt DL, Mackwell SJ (1998) Zeitschrift für Physikalische Chemie 207:147CrossRef
13.
17.
18.
go back to reference Hirth G, Kohlstedt DL (2003) Inside the subduction factory. Geophys Monogr 138:83. Amer Geophys Union, Washington, DC Hirth G, Kohlstedt DL (2003) Inside the subduction factory. Geophys Monogr 138:83. Amer Geophys Union, Washington, DC
27.
29.
go back to reference Valet P-M, Plushkell W, Engell H-J (1975) Arch Eisenhuettenwes 46:383 Valet P-M, Plushkell W, Engell H-J (1975) Arch Eisenhuettenwes 46:383
32.
go back to reference Kröger FA, Vink HJ (1956) Solid state physics, vol 3. Academic Press, San Diego, CA, p 307 Kröger FA, Vink HJ (1956) Solid state physics, vol 3. Academic Press, San Diego, CA, p 307
33.
34.
go back to reference Schmalzried H (1981) Solid state reactions. Elsevier, New York Schmalzried H (1981) Solid state reactions. Elsevier, New York
35.
37.
go back to reference Schwier VG, Dieckmann R, Schmalzried H (1973) Ber Bunsenges Phys Chem 77:402 Schwier VG, Dieckmann R, Schmalzried H (1973) Ber Bunsenges Phys Chem 77:402
38.
40.
go back to reference Morioka M (1989) Rheology of solids and of the earth. Oxford University Press, Oxford, p 156 Morioka M (1989) Rheology of solids and of the earth. Oxford University Press, Oxford, p 156
41.
go back to reference Schmalzried H (1995) Chemical kinetics of solids. VCH Verlagsgesellschaft, WeinheimCrossRef Schmalzried H (1995) Chemical kinetics of solids. VCH Verlagsgesellschaft, WeinheimCrossRef
43.
Metadata
Title
The role of protons in ionic diffusion in (Mg, Fe)O and (Mg, Fe)2SiO4
Authors
David L. Kohlstedt
Stephen J. Mackwell
Publication date
01-07-2008
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2008
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-007-2420-1

Other articles of this Issue 14/2008

Journal of Materials Science 14/2008 Go to the issue

Premium Partners