Skip to main content
Top

2017 | OriginalPaper | Chapter

4. The Role of Thin and Mobile Electric Double Layer in Water Purification and Energy Storage

Author : Tuan Anh Ho

Published in: Nanoscale Fluid Transport

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is well known that the electric double layer plays important roles in a variety of applications, ranging from biology to materials sciences. Many studied the electric double layer using a variety of techniques, and as a result our understanding is mature, although not complete. Based on detailed understanding, I expect that by manipulating the electric double layer we could advance tremendously applications in the water-energy nexus. This is particularly true for electric double layer capacitors and capacitive desalination devices. However, such manipulation is not straightforward because of a competition of phenomena that occur within the electric double layer itself, including solvation effects, excluded volume phenomena, and ion-ion correlations. Using molecular dynamics simulations, I designed a composite graphene-based electrode to manipulate structural and dynamical properties of the electric double layer. My design favours the formation of the compact Helmholtz layer. Inherent to my design is that the compact Helmholtz layer not only is atomically thick, but it is also highly mobile in the direction parallel to the charged surface. I suggest here how to exploit the properties of the engineered electric double layer towards developing a new continuous desalination process that combines the advantages of membrane and capacitive desalination processes, reducing their shortcomings. Insights on the molecular mechanisms relevant to the water-energy nexus are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shannon, M. A., et al. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.CrossRef Shannon, M. A., et al. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.CrossRef
2.
go back to reference Tour, J. M., Kittrell, C., & Colvin, V. L. (2010). Green carbon as a bridge to renewable energy. Nature Materials, 9(11), 871–874.CrossRef Tour, J. M., Kittrell, C., & Colvin, V. L. (2010). Green carbon as a bridge to renewable energy. Nature Materials, 9(11), 871–874.CrossRef
3.
go back to reference Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.CrossRef Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.CrossRef
4.
go back to reference Miller, J. R., & Simon, P. (2008). Materials science—Electrochemical capacitors for energy management. Science, 321(5889), 651–652.CrossRef Miller, J. R., & Simon, P. (2008). Materials science—Electrochemical capacitors for energy management. Science, 321(5889), 651–652.CrossRef
5.
go back to reference Helmholtz, H. (1853). Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 165(6), 211–233.CrossRef Helmholtz, H. (1853). Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 165(6), 211–233.CrossRef
6.
go back to reference Bard, A., & Fraulkner, L. (2001). Electrochemical methods: Fundamentals and applications. New York: Wiley. Bard, A., & Fraulkner, L. (2001). Electrochemical methods: Fundamentals and applications. New York: Wiley.
7.
go back to reference Butt, H. J., & Kappl, M. (2010). Surface and interfacial forces. Weinheim, Germany: Wiley.CrossRef Butt, H. J., & Kappl, M. (2010). Surface and interfacial forces. Weinheim, Germany: Wiley.CrossRef
8.
go back to reference Huang, J. S., Qiao, R., Sumpter, B. G., & Meunier, V. (2010). Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 25(8), 1469–1475.CrossRef Huang, J. S., Qiao, R., Sumpter, B. G., & Meunier, V. (2010). Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 25(8), 1469–1475.CrossRef
9.
go back to reference Schmickler, W. (1996). Electronic effects in the electric double layer. Chemical Reviews, 96(8), 3177–3200.CrossRef Schmickler, W. (1996). Electronic effects in the electric double layer. Chemical Reviews, 96(8), 3177–3200.CrossRef
10.
go back to reference Gouy (1909). On the constitution of the electric charge at the surface of an electrolyte. Cr Hebd Acad Sci, 149, 654–657. Gouy (1909). On the constitution of the electric charge at the surface of an electrolyte. Cr Hebd Acad Sci, 149, 654–657.
11.
go back to reference Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Philosophical Magazine, 25(148), 475–481.CrossRef Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Philosophical Magazine, 25(148), 475–481.CrossRef
12.
go back to reference Israelachvili, J. (1991). Intermolecular & surface forces (2nd ed.). New York: Academic Press. Israelachvili, J. (1991). Intermolecular & surface forces (2nd ed.). New York: Academic Press.
13.
go back to reference Stern, O. (1924). The theory of the electrolytic double shift. Z Elktrochem Angew P 30:508–516. Stern, O. (1924). The theory of the electrolytic double shift. Z Elktrochem Angew P 30:508–516.
14.
go back to reference Wang, H. N., & Pilon, L. (2011). Accurate simulations of electric double layer capacitance of ultramicroelectrodes. Journal of Physical Chemistry C, 115(33), 16711–16719.CrossRef Wang, H. N., & Pilon, L. (2011). Accurate simulations of electric double layer capacitance of ultramicroelectrodes. Journal of Physical Chemistry C, 115(33), 16711–16719.CrossRef
15.
go back to reference Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H., & van der Wal, A. (2010). Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1(1), 205–210.CrossRef Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H., & van der Wal, A. (2010). Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1(1), 205–210.CrossRef
16.
go back to reference Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.CrossRef Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.CrossRef
17.
go back to reference Chmiola, J., et al. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760–1763.CrossRef Chmiola, J., et al. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760–1763.CrossRef
18.
go back to reference Largeot, C., et al. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 130(9), 2730–2731.CrossRef Largeot, C., et al. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 130(9), 2730–2731.CrossRef
19.
go back to reference Fedorov, M. V., & Kornyshev, A. A. (2008). Ionic liquid near a charged wall: Structure and capacitance of electrical double layer. The Journal of Physical Chemistry B, 112(38), 11868–11872.CrossRef Fedorov, M. V., & Kornyshev, A. A. (2008). Ionic liquid near a charged wall: Structure and capacitance of electrical double layer. The Journal of Physical Chemistry B, 112(38), 11868–11872.CrossRef
20.
go back to reference Vatamanu, J., Borodin, O., & Smith, G. D. (2010). Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. Journal of the American Chemical Society, 132(42), 14825–14833.CrossRef Vatamanu, J., Borodin, O., & Smith, G. D. (2010). Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. Journal of the American Chemical Society, 132(42), 14825–14833.CrossRef
21.
go back to reference Shim, Y., Kim, H. J., & Jung, Y. (2012). Graphene-based supercapacitors in the parallel-plate electrode configuration: Ionic liquids versus organic electrolytes. Faraday Discussions, 154, 249–263.CrossRef Shim, Y., Kim, H. J., & Jung, Y. (2012). Graphene-based supercapacitors in the parallel-plate electrode configuration: Ionic liquids versus organic electrolytes. Faraday Discussions, 154, 249–263.CrossRef
22.
go back to reference Konatham, D., Yu, J., Ho, T. A., & Striolo, A. (2013). Simulation insights for graphene-based water desalination membranes. Langmuir, 29(38), 11884–11897.CrossRef Konatham, D., Yu, J., Ho, T. A., & Striolo, A. (2013). Simulation insights for graphene-based water desalination membranes. Langmuir, 29(38), 11884–11897.CrossRef
23.
go back to reference Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef
24.
go back to reference O’Hern, S. C., et al. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 234–1241. O’Hern, S. C., et al. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 234–1241.
25.
go back to reference Garaj, S., Liu, S., Golovchenko, J. A., & Branton, D. (2013). Molecule-hugging graphene nanopores. Proceedings of the National Academy of Sciences, 110(30), 12192–12196.CrossRef Garaj, S., Liu, S., Golovchenko, J. A., & Branton, D. (2013). Molecule-hugging graphene nanopores. Proceedings of the National Academy of Sciences, 110(30), 12192–12196.CrossRef
26.
go back to reference Koenig, S. P., Wang, L. D., Pellegrino, J., & Bunch, J. S. (2012). Selective molecular sieving through porous graphene. Nature Nanotechnology, 7(11), 728–732.CrossRef Koenig, S. P., Wang, L. D., Pellegrino, J., & Bunch, J. S. (2012). Selective molecular sieving through porous graphene. Nature Nanotechnology, 7(11), 728–732.CrossRef
27.
go back to reference Giovambattista, N., Rossky, P. J., & Debenedetti, P. G. (2006). Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Physical Review E, 73(4), 041604.CrossRef Giovambattista, N., Rossky, P. J., & Debenedetti, P. G. (2006). Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Physical Review E, 73(4), 041604.CrossRef
28.
go back to reference Huang, H. B., et al. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun, 4, 2979. Huang, H. B., et al. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun, 4, 2979.
29.
go back to reference Merlet, C., et al. (2012). On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 11(4), 306–310.CrossRef Merlet, C., et al. (2012). On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 11(4), 306–310.CrossRef
30.
go back to reference Merlet, C., et al. (2013). Simulating supercapacitors: Can we model electrodes as constant charge surfaces? J Phys Chem Lett, 4(2), 264–268.CrossRef Merlet, C., et al. (2013). Simulating supercapacitors: Can we model electrodes as constant charge surfaces? J Phys Chem Lett, 4(2), 264–268.CrossRef
31.
go back to reference Ho, T. A., & Striolo, A. (2013). Polarizability effects in molecular dynamics simulations of the graphene-water interface. The Journal of Chemical Physics, 138(5), 054117.CrossRef Ho, T. A., & Striolo, A. (2013). Polarizability effects in molecular dynamics simulations of the graphene-water interface. The Journal of Chemical Physics, 138(5), 054117.CrossRef
32.
go back to reference Cheng, A., & Steele, W. A. (1990). Computer-simulation of ammonia on graphite. 1. Low-temperature structure of monolayer and bilayer films. The Journal of Chemical Physics, 92(6), 3858–3866.CrossRef Cheng, A., & Steele, W. A. (1990). Computer-simulation of ammonia on graphite. 1. Low-temperature structure of monolayer and bilayer films. The Journal of Chemical Physics, 92(6), 3858–3866.CrossRef
33.
go back to reference Ho, T. A., & Striolo, A. (2014). Molecular dynamics simulation of the graphene-water interface: Comparing water models. Molecular Simulation, 40(14), 1190–1200.CrossRef Ho, T. A., & Striolo, A. (2014). Molecular dynamics simulation of the graphene-water interface: Comparing water models. Molecular Simulation, 40(14), 1190–1200.CrossRef
34.
go back to reference Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef
35.
go back to reference Dang, L. X. (1995). Mechanism and thermodynamics of ion selectivity in aqueous-solutions of 18-crown-6 ether: a molecular-dynamics study. Journal of the American Chemical Society, 117(26), 6954–6960.CrossRef Dang, L. X. (1995). Mechanism and thermodynamics of ion selectivity in aqueous-solutions of 18-crown-6 ether: a molecular-dynamics study. Journal of the American Chemical Society, 117(26), 6954–6960.CrossRef
36.
go back to reference Levin, Y. (2009). Polarizable ions at interfaces. Physical Review Letters, 102(14), 147803.CrossRef Levin, Y. (2009). Polarizable ions at interfaces. Physical Review Letters, 102(14), 147803.CrossRef
37.
go back to reference Huang, J. Y., et al. (2013). Nanowire liquid pumps. Nature Nanotechnology, 8(4), 277–281.CrossRef Huang, J. Y., et al. (2013). Nanowire liquid pumps. Nature Nanotechnology, 8(4), 277–281.CrossRef
38.
go back to reference Jungwirth, P., & Tobias, D. J. (2002). Ions at the air/water interface. The Journal of Physical Chemistry, 106(25), 6361–6373.CrossRef Jungwirth, P., & Tobias, D. J. (2002). Ions at the air/water interface. The Journal of Physical Chemistry, 106(25), 6361–6373.CrossRef
39.
go back to reference Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. The Journal of Chemical Physics, 135(14), 144701.CrossRef Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. The Journal of Chemical Physics, 135(14), 144701.CrossRef
40.
go back to reference Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef
41.
go back to reference Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.CrossRef Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.CrossRef
42.
go back to reference Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170–16175.CrossRef Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170–16175.CrossRef
43.
go back to reference Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer. Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer.
44.
go back to reference Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef
45.
go back to reference Holt, JK., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034. Holt, JK., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034.
46.
go back to reference Whitby, M., & Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94.CrossRef Whitby, M., & Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94.CrossRef
47.
go back to reference Smith, D. E., & Dang, L. X. (1994). Computer-simulations of Nacl association in polarizable water. The Journal of Chemical Physics, 100(5), 3757–3766.CrossRef Smith, D. E., & Dang, L. X. (1994). Computer-simulations of Nacl association in polarizable water. The Journal of Chemical Physics, 100(5), 3757–3766.CrossRef
48.
go back to reference Yang, L., Fishbine, B. H., Migliori, A., & Pratt, L. R. (2009). Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. Journal of the American Chemical Society, 131(34), 12373–12376.CrossRef Yang, L., Fishbine, B. H., Migliori, A., & Pratt, L. R. (2009). Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. Journal of the American Chemical Society, 131(34), 12373–12376.CrossRef
49.
go back to reference Shim, Y., & Kim, H. J. (2010). Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study. ACS Nano, 4(4), 2345–2355.CrossRef Shim, Y., & Kim, H. J. (2010). Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study. ACS Nano, 4(4), 2345–2355.CrossRef
50.
go back to reference Kalra, A., Garde, S., & Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 100(18), 10175–10180.CrossRef Kalra, A., Garde, S., & Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 100(18), 10175–10180.CrossRef
51.
go back to reference Striolo, A. (2006). The mechanism of water diffusion in narrow carbon nanotubes. Nano Letters, 6(4), 633.CrossRef Striolo, A. (2006). The mechanism of water diffusion in narrow carbon nanotubes. Nano Letters, 6(4), 633.CrossRef
52.
go back to reference Suss, M. E., et al. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 9511–9519.CrossRef Suss, M. E., et al. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 9511–9519.CrossRef
53.
go back to reference Porada, S., Sales, B. B., Hamelers, H. V. M., & Biesheuvel, P. M. (2012). Water desalination with wires. The Journal of Physical Chemistry Letters, 3(12), 1613–1618.CrossRef Porada, S., Sales, B. B., Hamelers, H. V. M., & Biesheuvel, P. M. (2012). Water desalination with wires. The Journal of Physical Chemistry Letters, 3(12), 1613–1618.CrossRef
54.
go back to reference Kalluri, R. K., Konatham, D., & Striolo, A. (2011). Aqueous NaCl Solutions within charged carbon-slit pores: Partition Coefficients and density distributions from molecular dynamics simulations. Journal of Physical Chemistry C, 115(28), 13786–13795.CrossRef Kalluri, R. K., Konatham, D., & Striolo, A. (2011). Aqueous NaCl Solutions within charged carbon-slit pores: Partition Coefficients and density distributions from molecular dynamics simulations. Journal of Physical Chemistry C, 115(28), 13786–13795.CrossRef
55.
go back to reference Pendergast, M. M., & Hoek, E. M. V. (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946–1971.CrossRef Pendergast, M. M., & Hoek, E. M. V. (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946–1971.CrossRef
56.
go back to reference Christen, K. (2006). Desalination technology could clean up wastewater from coal-bed methane production. Environmental Science and Technology, 40(3), 639.CrossRef Christen, K. (2006). Desalination technology could clean up wastewater from coal-bed methane production. Environmental Science and Technology, 40(3), 639.CrossRef
57.
go back to reference Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: An alternative desalination solution. Desalination, 183(1–3), 327–340.CrossRef Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: An alternative desalination solution. Desalination, 183(1–3), 327–340.CrossRef
Metadata
Title
The Role of Thin and Mobile Electric Double Layer in Water Purification and Energy Storage
Author
Tuan Anh Ho
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47003-0_4

Premium Partner