Skip to main content
Top
Published in: The Journal of Supercomputing 15/2023

08-05-2023

The short-term prediction of daily traffic volume for rural roads using shallow and deep learning networks: ANN and LSTM

Authors: Mojtaba Mohammadzadeh, Abdoul-Ahad Choupani, Farshid Afshar

Published in: The Journal of Supercomputing | Issue 15/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Predicting daily traffic volume in the short term is of great importance for rural roads since it assists in relieving congestion, trip planning, and improving the level of service (LOS). Benchmark parametric methods like seasonal autoregressive integrated moving average (SARIMA) show less accurate predictions when traffic flow sustains irregularities. In addition, the SARIMA is not sophisticated enough to properly employ big data. Shallow learning techniques like the artificial neural network (ANN) cannot capture short-term and long-term time dependencies of daily traffic volume. Therefore, long short-term memory (LSTM) has been suggested to estimate the daily traffic volume of rural roads. LSTM offers a proper estimate of the daily traffic volume using a unit structure, with no need to create a separate model for each piece of a road. The daily traffic volume for three types of roads, i.e., high-volume roads, international roads for transit of goods, and recreational roads leading to the city of Mashhad, Iran, was estimated using LSTM. The research results demonstrated that SARIMA displayed constant sinusoidal variations around the annual average of daily traffic (AADT) and was very weak in capturing the irregularities of daily volume. Unlike SARIMA, ANN was generally better at following the volume trends. However, unrealistic spikes and drops in the forecasts of ANN occurred on days close to national holidays. LSTM resulted in the highest percentage of estimation accuracy (95%) while having no overfitting issue. Better estimates were obtained for the international freight transit roads where the volume variations were lower.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao Z, Chen W, Wu X, Chen PC, Liu J (2017) LSTM network: a deep learning approach for short-term traffic forecast. IET Intel Transp Syst 11(2):68–75CrossRef Zhao Z, Chen W, Wu X, Chen PC, Liu J (2017) LSTM network: a deep learning approach for short-term traffic forecast. IET Intel Transp Syst 11(2):68–75CrossRef
2.
go back to reference Shahriari S, Ghasri M, Sisson SA, Rashidi T (2020) Ensemble of ARIMA: combining parametric and bootstrapping technique for traffic flow prediction. Transportmetrica A: Transp Sci 16(3):1552–1573CrossRef Shahriari S, Ghasri M, Sisson SA, Rashidi T (2020) Ensemble of ARIMA: combining parametric and bootstrapping technique for traffic flow prediction. Transportmetrica A: Transp Sci 16(3):1552–1573CrossRef
4.
go back to reference Van Hinsbergen CP, Van Lint JW, Sanders FM (2007) Short term traffic prediction models. In: 14th World Congress on Intelligent Transport Systems (ITS), Beijing, China Van Hinsbergen CP, Van Lint JW, Sanders FM (2007) Short term traffic prediction models. In: 14th World Congress on Intelligent Transport Systems (ITS), Beijing, China
5.
go back to reference Van Der Voort M, Dougherty M, Watson S (1996) Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp Res Part C: Emerg Technol 4(5):307–318CrossRef Van Der Voort M, Dougherty M, Watson S (1996) Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp Res Part C: Emerg Technol 4(5):307–318CrossRef
6.
go back to reference Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng 129(6):664–672CrossRef Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng 129(6):664–672CrossRef
7.
go back to reference Bernaś M, Płaczek B, Porwik P, Pamuła T (2015) Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. IET Intel Transp Syst 9(3):264–274CrossRef Bernaś M, Płaczek B, Porwik P, Pamuła T (2015) Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. IET Intel Transp Syst 9(3):264–274CrossRef
8.
go back to reference Wang J, Deng W, Guo Y (2014) New Bayesian combination method for short-term traffic flow forecasting. Transp Res Part C: Emerg Technol 43:79–94CrossRef Wang J, Deng W, Guo Y (2014) New Bayesian combination method for short-term traffic flow forecasting. Transp Res Part C: Emerg Technol 43:79–94CrossRef
9.
go back to reference Nguyen H, Kieu LM, Wen T, Cai C (2018) Deep learning methods in transportation domain: a review. IET Intel Transp Syst 12(9):998–1004CrossRef Nguyen H, Kieu LM, Wen T, Cai C (2018) Deep learning methods in transportation domain: a review. IET Intel Transp Syst 12(9):998–1004CrossRef
10.
go back to reference Veres M, Moussa M (2019) Deep learning for intelligent transportation systems: a survey of emerging trends. IEEE Trans Intell Transp Syst 21(8):3152–3168CrossRef Veres M, Moussa M (2019) Deep learning for intelligent transportation systems: a survey of emerging trends. IEEE Trans Intell Transp Syst 21(8):3152–3168CrossRef
11.
go back to reference Gamarra W, Martínez E, Cikel K, Santacruz M, Arzamendia M, Gregor D, Colbes J (2021) Deep learning for traffic prediction with an application to traffic lights optimization. In: 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), pp 31–36. IEEE Gamarra W, Martínez E, Cikel K, Santacruz M, Arzamendia M, Gregor D, Colbes J (2021) Deep learning for traffic prediction with an application to traffic lights optimization. In: 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), pp 31–36. IEEE
12.
go back to reference Gnanaprakash V, Kanthimathi N, Saranya N (2021) Automatic number plate recognition using deep learning. In: IOP Conference Series: Materials Science and Engineering, Vol. 1084, No. 1, p 012027. IOP Publishing Gnanaprakash V, Kanthimathi N, Saranya N (2021) Automatic number plate recognition using deep learning. In: IOP Conference Series: Materials Science and Engineering, Vol. 1084, No. 1, p 012027. IOP Publishing
13.
go back to reference Cheng Q, Liu Y, Wei W, Liu Z (2016) Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. Transp Anal Contest Tech Rep Cheng Q, Liu Y, Wei W, Liu Z (2016) Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. Transp Anal Contest Tech Rep
15.
go back to reference Kulkarni R, Dhavalikar S, Bangar S (2018) Traffic light detection and recognition for self driving cars using deep learning. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp 1–4. IEEE Kulkarni R, Dhavalikar S, Bangar S (2018) Traffic light detection and recognition for self driving cars using deep learning. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp 1–4. IEEE
16.
go back to reference Yan S, Teng Y, Smith JS, Zhang B (2016) Driver behavior recognition based on deep convolutional neural networks. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 636–641. IEEE Yan S, Teng Y, Smith JS, Zhang B (2016) Driver behavior recognition based on deep convolutional neural networks. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 636–641. IEEE
17.
go back to reference Jia Y, Wu J, Ben-Akiva M, Seshadri R, Du Y (2017) Rainfall-integrated traffic speed prediction using deep learning method. IET Intel Transp Syst 11(9):531–536CrossRef Jia Y, Wu J, Ben-Akiva M, Seshadri R, Du Y (2017) Rainfall-integrated traffic speed prediction using deep learning method. IET Intel Transp Syst 11(9):531–536CrossRef
18.
go back to reference Khan Z, Khan SM, Dey K, Chowdhury M (2019) Development and evaluation of recurrent neural network-based models for hourly traffic volume and annual average daily traffic prediction. Transp Res Rec 2673(7):489–503CrossRef Khan Z, Khan SM, Dey K, Chowdhury M (2019) Development and evaluation of recurrent neural network-based models for hourly traffic volume and annual average daily traffic prediction. Transp Res Rec 2673(7):489–503CrossRef
19.
go back to reference Yang D, Chen K, Yang M, Zhao X (2019) Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. IET Intel Transp Syst 13(10):1475–1482CrossRef Yang D, Chen K, Yang M, Zhao X (2019) Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. IET Intel Transp Syst 13(10):1475–1482CrossRef
20.
go back to reference Tang J, Zeng J, Wang Y, Yuan H, Liu F, Huang H (2021) Traffic flow prediction on urban road network based on license plate recognition data: combining attention-LSTM with genetic algorithm. Transportmetrica A: Transp Sci 17(4):1217–1243CrossRef Tang J, Zeng J, Wang Y, Yuan H, Liu F, Huang H (2021) Traffic flow prediction on urban road network based on license plate recognition data: combining attention-LSTM with genetic algorithm. Transportmetrica A: Transp Sci 17(4):1217–1243CrossRef
21.
go back to reference Hou Y, Edara P (2018) Network scale travel time prediction using deep learning. Transp Res Rec 2672(45):115–123CrossRef Hou Y, Edara P (2018) Network scale travel time prediction using deep learning. Transp Res Rec 2672(45):115–123CrossRef
22.
go back to reference Chen X, Wu S, Shi C, Huang Y, Yang Y, Ke R, Zhao J (2020) Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison. IEEE Sens J 20(23):14317–14328CrossRef Chen X, Wu S, Shi C, Huang Y, Yang Y, Ke R, Zhao J (2020) Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison. IEEE Sens J 20(23):14317–14328CrossRef
23.
go back to reference Chen X, Ling J, Wang S, Yang Y, Luo L, Yan Y (2021) Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework. J Navigation 74(6):1252–1266CrossRef Chen X, Ling J, Wang S, Yang Y, Luo L, Yan Y (2021) Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework. J Navigation 74(6):1252–1266CrossRef
24.
go back to reference Eom JK, Park MS, Heo TY, Huntsinger LF (2006) Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical method. Transp Res Rec 1968(1):20–29CrossRef Eom JK, Park MS, Heo TY, Huntsinger LF (2006) Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical method. Transp Res Rec 1968(1):20–29CrossRef
25.
go back to reference Mohammadzadeh M (2022) Predicting traffic flow using time series and deep learning [Unpublished master thesis]. Shahrood University of Technology, Iran Mohammadzadeh M (2022) Predicting traffic flow using time series and deep learning [Unpublished master thesis]. Shahrood University of Technology, Iran
26.
go back to reference Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
Metadata
Title
The short-term prediction of daily traffic volume for rural roads using shallow and deep learning networks: ANN and LSTM
Authors
Mojtaba Mohammadzadeh
Abdoul-Ahad Choupani
Farshid Afshar
Publication date
08-05-2023
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 15/2023
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-023-05333-w

Other articles of this Issue 15/2023

The Journal of Supercomputing 15/2023 Go to the issue

Premium Partner