Skip to main content
Top
Published in: Soft Computing 14/2020

19-11-2019 | Methodologies and Application

The solution of direct and inverse fractional advection–dispersion problems by using orthogonal collocation and differential evolution

Authors: F. S. Lobato, W. J. Lima, R. A. Borges, A. Ap. Cavalini Jr., V. Steffen Jr.

Published in: Soft Computing | Issue 14/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advection–dispersion phenomenon can be observed in various fields of science. Mathematically, this process can be studied by considering empirical models, high-order differential equations, and fractional differential equations. In this paper, a fractional model considered to represent the transport of passive tracers carried out by fluid flow in a porous media is studied both in the direct and inverse contexts. The studied mathematical model considers a one-dimensional fractional advection–dispersion equation with fractional derivative boundary conditions. The solutions of both direct and inverse problems are obtained by using the orthogonal collocation method and the differential evolution optimization algorithm approaches, respectively. In this case, the source term along the spatial and time coordinates is taken as a design variable. The obtained results with the solution of the direct problem are compared with those determined by using an implicit finite difference scheme. The results indicate that the proposed approach characterizes a promising methodology to solve the direct and inverse fractional advection–dispersion problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aslefallah M, Rostamy D (2014) A numerical scheme for solving space-fractional equation by finite differences theta-method. Int J Adv Appl Math Mech 1(4):1–9MATH Aslefallah M, Rostamy D (2014) A numerical scheme for solving space-fractional equation by finite differences theta-method. Int J Adv Appl Math Mech 1(4):1–9MATH
go back to reference Benítez T, Sherif SA (2017) Modeling spatial and temporal frost formation with distributed properties on a flat plate using the orthogonal collocation method. Int J Refrig 76:193–205 Benítez T, Sherif SA (2017) Modeling spatial and temporal frost formation with distributed properties on a flat plate using the orthogonal collocation method. Int J Refrig 76:193–205
go back to reference Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36(6):1403–1412 Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36(6):1403–1412
go back to reference Demirci E, Ozalp N (2012) A method for solving differential equations of fractional order. J Comput Appl Math 236:2754–2762MathSciNetMATH Demirci E, Ozalp N (2012) A method for solving differential equations of fractional order. J Comput Appl Math 236:2754–2762MathSciNetMATH
go back to reference Ebrahimi AA, Ebrahim HA, Jamshidi E (2008) Solving partial differential equations of gas–solid reactions by orthogonal collocation. Comput Chem Eng 32:1746–1759 Ebrahimi AA, Ebrahim HA, Jamshidi E (2008) Solving partial differential equations of gas–solid reactions by orthogonal collocation. Comput Chem Eng 32:1746–1759
go back to reference Ebrahimzadeh E, Shahrak MN, Bazooyar B (2012) Simulation of transient gas flow using the orthogonal collocation method. Chem Eng Res Des 90:1701–1710 Ebrahimzadeh E, Shahrak MN, Bazooyar B (2012) Simulation of transient gas flow using the orthogonal collocation method. Chem Eng Res Des 90:1701–1710
go back to reference Guo B, Xu Q, Yin Z (2016) Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions. Appl Math Mech 37(3):403–416MathSciNetMATH Guo B, Xu Q, Yin Z (2016) Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions. Appl Math Mech 37(3):403–416MathSciNetMATH
go back to reference Gupta S, Kumar D, Singh J (2015) Numerical study for systems of fractional differential equations via Laplace transform. J Egypt Math Soc 23:256–262MathSciNetMATH Gupta S, Kumar D, Singh J (2015) Numerical study for systems of fractional differential equations via Laplace transform. J Egypt Math Soc 23:256–262MathSciNetMATH
go back to reference Hernández-Calderón OM, Rubio-Castro E, Rios-Iribe EY (2014) Solving the heat and mass transfer equations for an evaporative cooling tower through an orthogonal collocation method. Comput Chem Eng 71:24–38 Hernández-Calderón OM, Rubio-Castro E, Rios-Iribe EY (2014) Solving the heat and mass transfer equations for an evaporative cooling tower through an orthogonal collocation method. Comput Chem Eng 71:24–38
go back to reference Jia J, Wang H (2015) Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J Comput Phys 293:359–369MathSciNetMATH Jia J, Wang H (2015) Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J Comput Phys 293:359–369MathSciNetMATH
go back to reference Jiang W, Lin Y (2010) Approximate solution of the fractional advection–dispersion equation. Comput Phys Commun 181:557–561MathSciNetMATH Jiang W, Lin Y (2010) Approximate solution of the fractional advection–dispersion equation. Comput Phys Commun 181:557–561MathSciNetMATH
go back to reference Kashan MH, Kashan AH, Nahavandi N (2013) A novel differential evolution algorithm for binary optimization. Comput Optim Appl 55:481–513MathSciNetMATH Kashan MH, Kashan AH, Nahavandi N (2013) A novel differential evolution algorithm for binary optimization. Comput Optim Appl 55:481–513MathSciNetMATH
go back to reference Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524–526 Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524–526
go back to reference Li X, Rui H (2018) A high-order fully conservative block-centered finite difference method for the time-fractional advection–dispersion equation. Appl Numer Math 124:89–109MathSciNetMATH Li X, Rui H (2018) A high-order fully conservative block-centered finite difference method for the time-fractional advection–dispersion equation. Appl Numer Math 124:89–109MathSciNetMATH
go back to reference Li C, Zhao T, Deng W, Wu Y (2014) Orthogonal spline collocation methods for the subdiffusion equation. J Comput Appl Math 255(1):517–528MathSciNetMATH Li C, Zhao T, Deng W, Wu Y (2014) Orthogonal spline collocation methods for the subdiffusion equation. J Comput Appl Math 255(1):517–528MathSciNetMATH
go back to reference Liang X, Yang Y-G, Gao F, Yang X-J, Xue Y (2018) Anomalous advection–dispersion equations within general fractional-order derivatives: models and series solutions. Entropy 20(1):78–85 Liang X, Yang Y-G, Gao F, Yang X-J, Xue Y (2018) Anomalous advection–dispersion equations within general fractional-order derivatives: models and series solutions. Entropy 20(1):78–85
go back to reference Liu T, Hou M (2017) A fast implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. Adv Math Phys, 1–8 Liu T, Hou M (2017) A fast implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. Adv Math Phys, 1–8
go back to reference Magin RL (2006) Fractional calculus in bioengineering. Begell House Publishers, New York Magin RL (2006) Fractional calculus in bioengineering. Begell House Publishers, New York
go back to reference Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNetMATH Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNetMATH
go back to reference Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
go back to reference Rehman M, Khan RA (2012) A numerical method for solving boundary value problems for fractional differential equations. Appl Math Model 36:894–907MathSciNetMATH Rehman M, Khan RA (2012) A numerical method for solving boundary value problems for fractional differential equations. Appl Math Model 36:894–907MathSciNetMATH
go back to reference Risken H (1984) Fokker-Planck equation: methods of solution and applications. Springer, Berlin, HeidelbergMATH Risken H (1984) Fokker-Planck equation: methods of solution and applications. Springer, Berlin, HeidelbergMATH
go back to reference Sabatelli L, Keating S, Dudley J, Richmond P (2002) Waiting time distributions in financial markets. Eur Phys J B 27:273–275MathSciNet Sabatelli L, Keating S, Dudley J, Richmond P (2002) Waiting time distributions in financial markets. Eur Phys J B 27:273–275MathSciNet
go back to reference Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Multiscaling fractional advection–dispersion equation and their solutions. Water Resour Res 39:1022–1032 Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Multiscaling fractional advection–dispersion equation and their solutions. Water Resour Res 39:1022–1032
go back to reference Singh S, Patel V, Singh V (2018) Application of wavelet collocation method for hyperbolic partial differential equations via matrices. Appl Math Comput 320:407–424MathSciNetMATH Singh S, Patel V, Singh V (2018) Application of wavelet collocation method for hyperbolic partial differential equations via matrices. Appl Math Comput 320:407–424MathSciNetMATH
go back to reference Sonmezoglu A (2015) Exact solutions for some fractional differential equations. Adv Math Phys 2015:1–10MathSciNetMATH Sonmezoglu A (2015) Exact solutions for some fractional differential equations. Adv Math Phys 2015:1–10MathSciNetMATH
go back to reference Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int Comput Sci Inst 12:1–16 Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int Comput Sci Inst 12:1–16
go back to reference Storn R, Price K, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Springer—natural computing series. Springer, BerlinMATH Storn R, Price K, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Springer—natural computing series. Springer, BerlinMATH
go back to reference Szekeres BJ, Izsák F (2015) A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Math 13:581–600MathSciNetMATH Szekeres BJ, Izsák F (2015) A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Math 13:581–600MathSciNetMATH
go back to reference Villadsen J, Michelsen ML (1978) Solution of differential equation models by polynomial approximation. Prentice-Hall, Englewood CliffsMATH Villadsen J, Michelsen ML (1978) Solution of differential equation models by polynomial approximation. Prentice-Hall, Englewood CliffsMATH
go back to reference Villadsen JV, Stewart WE (1967) Solution of boundary-value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501 Villadsen JV, Stewart WE (1967) Solution of boundary-value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501
go back to reference Yang X-J, Gao F, Machado JAT, Baleanu D (2017a) A new fractional derivative involving the normalized sinc function without singular kernel. Eur Phys J Spec Top 226:3567–3575 Yang X-J, Gao F, Machado JAT, Baleanu D (2017a) A new fractional derivative involving the normalized sinc function without singular kernel. Eur Phys J Spec Top 226:3567–3575
go back to reference Yang X-J, Machado JAT, Baleanu D (2017b) Exact traveling-wave solution for local fractional boussinesq equation in fractal domain. Fractals 25(4):1740006MathSciNet Yang X-J, Machado JAT, Baleanu D (2017b) Exact traveling-wave solution for local fractional boussinesq equation in fractal domain. Fractals 25(4):1740006MathSciNet
go back to reference Yang X-J, Machado JAT, Nieto JJ (2017c) A new family of the local fractional PDEs. Fundam Inform 151:63–75MathSciNetMATH Yang X-J, Machado JAT, Nieto JJ (2017c) A new family of the local fractional PDEs. Fundam Inform 151:63–75MathSciNetMATH
go back to reference Yang X, Zhang H, Xu D (2018a) Orthogonal spline collocation method for the fourth-order diffusion system. Comput Math Appl 75:3172–3185MathSciNetMATH Yang X, Zhang H, Xu D (2018a) Orthogonal spline collocation method for the fourth-order diffusion system. Comput Math Appl 75:3172–3185MathSciNetMATH
go back to reference Yang X-J, Gao F, Ju Y, Zhou H-W (2018b) Fundamental solutions of the general fractional-order diffusion equations. Math Methods Appl Sci. 41:9312–9320MathSciNetMATH Yang X-J, Gao F, Ju Y, Zhou H-W (2018b) Fundamental solutions of the general fractional-order diffusion equations. Math Methods Appl Sci. 41:9312–9320MathSciNetMATH
go back to reference Yang X-J, Feng Y-Y, Cattani C, Inc M (2019) Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Methods Appl Sci 42:1–7MathSciNetMATH Yang X-J, Feng Y-Y, Cattani C, Inc M (2019) Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Methods Appl Sci 42:1–7MathSciNetMATH
go back to reference Yıldırım A, Koçak H (2009) Homotopy perturbation method for solving the space-time fractional advection–dispersion equation. Adv Water Resour 32:1711–1716 Yıldırım A, Koçak H (2009) Homotopy perturbation method for solving the space-time fractional advection–dispersion equation. Adv Water Resour 32:1711–1716
go back to reference Yuan ZB, Nie YF, Liu F, Turner I, Zhang GY, Gu YT (2016) An advanced numerical modeling for Riesz space fractional advection–dispersion equations by a meshfree approach. Appl Math Model 40:7816–7829MathSciNetMATH Yuan ZB, Nie YF, Liu F, Turner I, Zhang GY, Gu YT (2016) An advanced numerical modeling for Riesz space fractional advection–dispersion equations by a meshfree approach. Appl Math Model 40:7816–7829MathSciNetMATH
go back to reference Zhang J (2018) A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations. Appl Math Comput 332:209–227MathSciNetMATH Zhang J (2018) A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations. Appl Math Comput 332:209–227MathSciNetMATH
go back to reference Zhang X, Liu L, Wu Y, Wiwatanapataphee B (2017) Nontrivial solutions for a fractional advection–dispersion equation in anomalous diffusion. Appl Math Lett 66:1–8MathSciNetMATH Zhang X, Liu L, Wu Y, Wiwatanapataphee B (2017) Nontrivial solutions for a fractional advection–dispersion equation in anomalous diffusion. Appl Math Lett 66:1–8MathSciNetMATH
Metadata
Title
The solution of direct and inverse fractional advection–dispersion problems by using orthogonal collocation and differential evolution
Authors
F. S. Lobato
W. J. Lima
R. A. Borges
A. Ap. Cavalini Jr.
V. Steffen Jr.
Publication date
19-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 14/2020
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-019-04541-y

Other articles of this Issue 14/2020

Soft Computing 14/2020 Go to the issue

Premium Partner