Skip to main content
Top
Published in: Numerical Algorithms 4/2021

27-04-2021 | Original Paper

The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations

Authors: Dingwen Deng, Qiang Wu

Published in: Numerical Algorithms | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, four linearly energy-preserving finite difference methods (EP-FDMs) are designed for two-dimensional (2D) nonlinear coupled sine-Gordon equations (CSGEs) and coupled Klein-Gordon equations (CKGEs) using the invariant energy quadratization method (IEQM). The 1st EP-FDM is designed by first introducing two auxiliary functions to rewrite the original problems into the new system only including the 1st-order temporal derivatives, and then applying Crank-Nicolson (C-N) method and 2nd-order centered difference methods for the discretizations of temporal and spatial derivatives, respectively. The 2nd EP-FDM is directly devised based on the uses of 2nd-order centered difference methods to approximate 2nd-order temporal and spatial derivatives. The 1st and 2nd EP-FDMs need numerical solutions of the algebraic system with variable coefficient matrices at each time level. By modifying the 2nd EP-FDM, the 3rd EP-FDM, which is implemented by computing the system of algebraic equations with constant coefficient matrices at each time level, is developed. Finally, an energy-preserving alternating direction implicit (ADI) finite difference method (EP-ADI-FDM) is established by a combination of ADI method with the 3rd EP-FDM. By using the discrete energy method, it is shown that they are all uniquely solvable, and their solutions have a convergent rate of \({\mathscr{O}}(\varDelta t^{2}+{h^{2}_{x}}+{h^{2}_{y}})\) in H1-norm and satisfy the discrete conservative laws. Numerical results show the efficiency and accuracy of them.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Segal, I.: Nonlinear partial differential equations in quantum field theory. Proc. Symp. Appl. Math. AMS 17, 210–226 (1965)MathSciNetCrossRef Segal, I.: Nonlinear partial differential equations in quantum field theory. Proc. Symp. Appl. Math. AMS 17, 210–226 (1965)MathSciNetCrossRef
2.
go back to reference Biswas, A., Kara, A.H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein-Gordon equations with cubic and power law nonlinearities. Proceedings of the Romanian Academy, Series A 15, 123–129 (2014)MathSciNet Biswas, A., Kara, A.H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein-Gordon equations with cubic and power law nonlinearities. Proceedings of the Romanian Academy, Series A 15, 123–129 (2014)MathSciNet
3.
go back to reference Liu, S., Fu, Z., Liu, S., Wang, Z.: The periodic solutions for a class of coupled nonlinear Klein-Gordon equations. Phys. Lett. A 323, 415–420 (2004)MathSciNetCrossRef Liu, S., Fu, Z., Liu, S., Wang, Z.: The periodic solutions for a class of coupled nonlinear Klein-Gordon equations. Phys. Lett. A 323, 415–420 (2004)MathSciNetCrossRef
4.
go back to reference Xiao, W., Ping, Y.: Global solutions and finite time blow up for some system of nonlinear wave equations. Appl. Math. Comput. 219, 3754–3768 (2012)MathSciNetMATH Xiao, W., Ping, Y.: Global solutions and finite time blow up for some system of nonlinear wave equations. Appl. Math. Comput. 219, 3754–3768 (2012)MathSciNetMATH
5.
go back to reference Ferreira, J.D.S.: Asymptotic behavier of the solutions of a nonlinear system of Klein-Gordon equations. Nonlinear Anal.: TMA 13, 1115–1126 (1989)CrossRef Ferreira, J.D.S.: Asymptotic behavier of the solutions of a nonlinear system of Klein-Gordon equations. Nonlinear Anal.: TMA 13, 1115–1126 (1989)CrossRef
6.
go back to reference Xu, Z., Dong, X., Yuan, Y.: Error estimates in the energy space for Gautschi-type integrator spectral discretization for coupled nonlinear Klein-Gordon equatons. J. Comput. Appl. Math. 292, 402–416 (2016)MathSciNetCrossRef Xu, Z., Dong, X., Yuan, Y.: Error estimates in the energy space for Gautschi-type integrator spectral discretization for coupled nonlinear Klein-Gordon equatons. J. Comput. Appl. Math. 292, 402–416 (2016)MathSciNetCrossRef
7.
go back to reference Deng, D., Liang, D.: The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. Appl. Numer. Math. 151, 172–198 (2020)MathSciNetCrossRef Deng, D., Liang, D.: The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. Appl. Numer. Math. 151, 172–198 (2020)MathSciNetCrossRef
8.
go back to reference Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein–Gordon equations. Wave Motion 38, 1–10 (2003)MathSciNetCrossRef Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein–Gordon equations. Wave Motion 38, 1–10 (2003)MathSciNetCrossRef
9.
go back to reference Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning I, II. Zhurnal Eksperimental’noii Teoreticheskoi Fiziki 8(89-95), 1340–1368 (1938)MATH Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning I, II. Zhurnal Eksperimental’noii Teoreticheskoi Fiziki 8(89-95), 1340–1368 (1938)MATH
10.
11.
12.
13.
go back to reference Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Morden Optics 65, 361–364 (2018)MathSciNetCrossRef Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Morden Optics 65, 361–364 (2018)MathSciNetCrossRef
14.
go back to reference Ekici, M., Zhou, Q., Sonmezoglua, A., Mirzazadehc, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)CrossRef Ekici, M., Zhou, Q., Sonmezoglua, A., Mirzazadehc, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)CrossRef
15.
go back to reference Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)MathSciNetCrossRef Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)MathSciNetCrossRef
16.
go back to reference Kumar, K.H., Vijesh, V.A.: Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dynam. 12, 011018 (2017)CrossRef Kumar, K.H., Vijesh, V.A.: Chebyshev wavelet quasilinearization scheme for coupled nonlinear sine-Gordon equations. J. Comput. Nonlinear Dynam. 12, 011018 (2017)CrossRef
17.
go back to reference Deng, D.: Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numer. Func. Anal. Opt. 40(9), 1053–1079 (2019)MathSciNetCrossRef Deng, D.: Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numer. Func. Anal. Opt. 40(9), 1053–1079 (2019)MathSciNetCrossRef
18.
go back to reference Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)MathSciNetCrossRef Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)MathSciNetCrossRef
19.
go back to reference Strauss, W., Vazque, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)MathSciNetCrossRef Strauss, W., Vazque, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)MathSciNetCrossRef
20.
go back to reference Li, S., Vu-Quoc, L.: Finite difference calculus structure of a class of algorithm for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRef Li, S., Vu-Quoc, L.: Finite difference calculus structure of a class of algorithm for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRef
21.
go back to reference Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)MathSciNetCrossRef Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)MathSciNetCrossRef
22.
go back to reference Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian boundary value and Fourier Pseudospectral methods for the numerical solution of “good” Boussinesq equation. Comput. Phys. Communications 201, 33–42 (2016)MathSciNetCrossRef Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian boundary value and Fourier Pseudospectral methods for the numerical solution of “good” Boussinesq equation. Comput. Phys. Communications 201, 33–42 (2016)MathSciNetCrossRef
23.
go back to reference Yan, J., Zhang, Q., Zhang, Z., Liang, D.: A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numer. Algor. 74, 659–674 (2017)MathSciNetCrossRef Yan, J., Zhang, Q., Zhang, Z., Liang, D.: A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numer. Algor. 74, 659–674 (2017)MathSciNetCrossRef
24.
25.
go back to reference Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRef Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRef
26.
go back to reference Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRef Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRef
27.
go back to reference Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRef Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRef
28.
go back to reference Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl Sci. 27, 1993–2030 (2017)MathSciNetCrossRef Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl Sci. 27, 1993–2030 (2017)MathSciNetCrossRef
29.
go back to reference Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)MathSciNetCrossRef Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)MathSciNetCrossRef
30.
go back to reference Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algor. 85, 107–132 (2020)MathSciNetCrossRef Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algor. 85, 107–132 (2020)MathSciNetCrossRef
31.
go back to reference Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)MathSciNetCrossRef Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)MathSciNetCrossRef
32.
go back to reference Wang, T., Guo, B.: Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numer. Numer. Meth. Part. Diff. Eq. 27, 1340–1363 (2011)MathSciNetCrossRef Wang, T., Guo, B.: Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numer. Numer. Meth. Part. Diff. Eq. 27, 1340–1363 (2011)MathSciNetCrossRef
33.
go back to reference Sun, Z.: Numerical Methods for Partial Differential Equations[M], 2nd edn. Science Press, Beijing (2012). In Chinese) Sun, Z.: Numerical Methods for Partial Differential Equations[M], 2nd edn. Science Press, Beijing (2012). In Chinese)
34.
go back to reference Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer. Algor. 85, 133–1363 (2020)CrossRef Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer. Algor. 85, 133–1363 (2020)CrossRef
35.
go back to reference Zhou, Y., Zhang, C., Brugnano, L.: Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations. Numer. Algor. 84, 633–649 (2020)MathSciNetCrossRef Zhou, Y., Zhang, C., Brugnano, L.: Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations. Numer. Algor. 84, 633–649 (2020)MathSciNetCrossRef
Metadata
Title
The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations
Authors
Dingwen Deng
Qiang Wu
Publication date
27-04-2021
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2021
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-021-01099-5

Other articles of this Issue 4/2021

Numerical Algorithms 4/2021 Go to the issue

Premium Partner