Skip to main content
Top
Published in: Cellulose 5/2013

01-10-2013 | Original Paper

The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy

Author: Jose M. Moran-Mirabal

Published in: Cellulose | Issue 5/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The efficient decomposition of biomass into carbohydrates for the sustainable generation of biofuels has become the focus of much research. Yet, limited understanding exists on how the enzymes that catalyze the biochemical conversion of biomass, such as cellulases, interact with cellulose microfibrils and how cellulose structure is changed by cellulolytic enzymes. This has spurred the application of high-resolution imaging techniques, such as atomic force microscopy or fluorescence microscopy, to visualize the biomolecular interactions and structural changes that occur at the micro/nanoscale. In particular, fluorescence microscopy offers advantages such as high sensitivity and the ability to monitor species under biologically relevant conditions. Furthermore, the introduction of techniques, such as single molecule or super-resolution fluorescence microscopy, has allowed imaging biomolecules and macromolecular structures with near molecular resolution. These advantages make fluorescence microscopy ideally suited for the study of cell wall structure and cellulose–cellulase interactions. The application of fluorescence microscopy has already yielded key insights into the arrangement of structural polysaccharides in the plant cell wall, the reversibility and binding kinetics of cellulases, their molecular motion on crystalline cellulose, and the structural changes that occur as cellulose is depolymerized by cellulases. Yet, the application of fluorescence to study cellulose–cellulase interactions remains limited. This review aims at (1) providing an overview of fluorescence microscopy techniques suitable for the study of cellulose–cellulase interactions; (2) the applications of these techniques to date and the key insights obtained; and (3) the opportunities for future studies of the interaction of cell wall degrading enzymes with cellulosic materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Basché T, Ambrose WP, Moerner WE (1992) Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning. J Opt Soc Am B 9:829. doi:10.1364/JOSAB.9.000829 CrossRef Basché T, Ambrose WP, Moerner WE (1992) Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning. J Opt Soc Am B 9:829. doi:10.​1364/​JOSAB.​9.​000829 CrossRef
go back to reference Brunecky R, Vinzant TB, Porter SE et al (2009) Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol Bioeng 102:1537–1543. doi:10.1002/bit.22211 CrossRef Brunecky R, Vinzant TB, Porter SE et al (2009) Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol Bioeng 102:1537–1543. doi:10.​1002/​bit.​22211 CrossRef
go back to reference Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663 CrossRef Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.​1093/​nar/​gkn663 CrossRef
go back to reference Cordes T, Strackharn M, Stahl SW et al (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10:645–651. doi:10.1021/nl903730r CrossRef Cordes T, Strackharn M, Stahl SW et al (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10:645–651. doi:10.​1021/​nl903730r CrossRef
go back to reference Cuyvers S, Hendrix J, Dornez E et al (2011) Both substrate hydrolysis and secondary substrate binding determine xylanase mobility as assessed by FRAP. J Phys Chem B 115:4810–4817. doi:10.1021/jp110963f CrossRef Cuyvers S, Hendrix J, Dornez E et al (2011) Both substrate hydrolysis and secondary substrate binding determine xylanase mobility as assessed by FRAP. J Phys Chem B 115:4810–4817. doi:10.​1021/​jp110963f CrossRef
go back to reference Dagel DJ, Liu Y-S, Zhong L et al (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641. doi:10.1021/jp109798p CrossRef Dagel DJ, Liu Y-S, Zhong L et al (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641. doi:10.​1021/​jp109798p CrossRef
go back to reference Daniel G, Filonova L, Kallas ÅM, Teeri TT (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM1 Hj Cel7A and fluorescence and FE-SEM microscopy. Holzforschung 60:618–624. doi:10.1515/HF.2006.104 CrossRef Daniel G, Filonova L, Kallas ÅM, Teeri TT (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM1 Hj Cel7A and fluorescence and FE-SEM microscopy. Holzforschung 60:618–624. doi:10.​1515/​HF.​2006.​104 CrossRef
go back to reference Ding S-Y, Xu Q, Ali M et al (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41:435–443. doi:10.2144/000112244 CrossRef Ding S-Y, Xu Q, Ali M et al (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41:435–443. doi:10.​2144/​000112244 CrossRef
go back to reference Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197. doi:10.1083/jcb.29.2.181 CrossRef Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197. doi:10.​1083/​jcb.​29.​2.​181 CrossRef
go back to reference Kawakubo T, Karita S, Araki Y et al (2010) Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol Bioeng 105:499–508. doi:10.1002/bit.22550 CrossRef Kawakubo T, Karita S, Araki Y et al (2010) Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol Bioeng 105:499–508. doi:10.​1002/​bit.​22550 CrossRef
go back to reference Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165. doi:10.1021/bm050479t CrossRef Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165. doi:10.​1021/​bm050479t CrossRef
go back to reference Luterbacher JS, Walker LP, Moran-Mirabal JM (2013) Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reseii Cel7A through confocal microscopy. Biotechnol Bioeng 110:108–117. doi:10.1002/bit.24597 CrossRef Luterbacher JS, Walker LP, Moran-Mirabal JM (2013) Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reseii Cel7A through confocal microscopy. Biotechnol Bioeng 110:108–117. doi:10.​1002/​bit.​24597 CrossRef
go back to reference Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. doi:10.1038/nmeth.1176 CrossRef Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. doi:10.​1038/​nmeth.​1176 CrossRef
go back to reference McCartney L, Blake AW, Flint J et al (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770. doi:10.1073/pnas.0508887103 CrossRef McCartney L, Blake AW, Flint J et al (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770. doi:10.​1073/​pnas.​0508887103 CrossRef
go back to reference Moran-Mirabal JM, Santhanam N, Corgie SC et al (2008) Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 101:1129–1141. doi:10.1002/bit.21990 CrossRef Moran-Mirabal JM, Santhanam N, Corgie SC et al (2008) Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 101:1129–1141. doi:10.​1002/​bit.​21990 CrossRef
go back to reference Moran-Mirabal JM, Bolewski JC, Walker LP (2011) Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 155:20–28. doi:10.1016/j.bpc.2011.02.003 CrossRef Moran-Mirabal JM, Bolewski JC, Walker LP (2011) Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 155:20–28. doi:10.​1016/​j.​bpc.​2011.​02.​003 CrossRef
go back to reference Moran-Mirabal JM, Bolewski JC, Walker LP (2013) Thermobifida fusca cellulases exhibit limited surface diffusion on bacterial micro-crystalline cellulose. Biotechnol Bioeng 110:47–56. doi:10.1002/bit.24604 CrossRef Moran-Mirabal JM, Bolewski JC, Walker LP (2013) Thermobifida fusca cellulases exhibit limited surface diffusion on bacterial micro-crystalline cellulose. Biotechnol Bioeng 110:47–56. doi:10.​1002/​bit.​24604 CrossRef
go back to reference Pinto R, Amaral AL, Carvalho J et al (2007) Development of a method using image analysis for the measurement of cellulose-binding domains adsorbed onto cellulose fibers. Biotechnol Prog 23:1492–1497. doi:10.1021/bp070026v CrossRef Pinto R, Amaral AL, Carvalho J et al (2007) Development of a method using image analysis for the measurement of cellulose-binding domains adsorbed onto cellulose fibers. Biotechnol Prog 23:1492–1497. doi:10.​1021/​bp070026v CrossRef
go back to reference Porter SE, Donohoe BS, Beery KE et al (2007) Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol Bioeng 98:123–131. doi:10.1002/bit.21409 CrossRef Porter SE, Donohoe BS, Beery KE et al (2007) Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol Bioeng 98:123–131. doi:10.​1002/​bit.​21409 CrossRef
go back to reference Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.1021/bm100366h CrossRef Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.​1021/​bm100366h CrossRef
go back to reference Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci 106:3125–3130. doi:10.1073/pnas.0813131106 CrossRef Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci 106:3125–3130. doi:10.​1073/​pnas.​0813131106 CrossRef
go back to reference Stenoien DL, Patel K, Mancini MG et al (2000) FRAP reveals that mobility of oestrogen receptor-α is ligand-and proteasome-dependent. Nat Cell Biol 3:15–23. doi:10.1038/35050515 Stenoien DL, Patel K, Mancini MG et al (2000) FRAP reveals that mobility of oestrogen receptor-α is ligand-and proteasome-dependent. Nat Cell Biol 3:15–23. doi:10.​1038/​35050515
go back to reference Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2010) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983. doi:10.1007/s10295-010-0870-y CrossRef Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2010) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983. doi:10.​1007/​s10295-010-0870-y CrossRef
go back to reference Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701. doi:10.1105/tpc.9.5.689 Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701. doi:10.​1105/​tpc.​9.​5.​689
go back to reference Vogelsang J, Cordes T, Forthmann C et al (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci 106:8107. doi:10.1073/pnas.0811875106 CrossRef Vogelsang J, Cordes T, Forthmann C et al (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci 106:8107. doi:10.​1073/​pnas.​0811875106 CrossRef
go back to reference Wang L, Wang Y, Ragauskas AJ (2012) Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Anal 137:1319. doi:10.1039/c2an15938d CrossRef Wang L, Wang Y, Ragauskas AJ (2012) Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Anal 137:1319. doi:10.​1039/​c2an15938d CrossRef
go back to reference Zhu P, Moran-Mirabal JM, Luterbacher JS et al (2011) Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy. Cellulose 18:749–758. doi:10.1007/s10570-011-9506-2 CrossRef Zhu P, Moran-Mirabal JM, Luterbacher JS et al (2011) Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy. Cellulose 18:749–758. doi:10.​1007/​s10570-011-9506-2 CrossRef
Metadata
Title
The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy
Author
Jose M. Moran-Mirabal
Publication date
01-10-2013
Publisher
Springer Netherlands
Published in
Cellulose / Issue 5/2013
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0010-8

Other articles of this Issue 5/2013

Cellulose 5/2013 Go to the issue