Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2018

14-05-2018 | Original

Theoretical approach of characterizing the crack-tip constraint effects associated with material’s fracture toughness

Authors: Junnan Lv, Li Yu, Wei Du, Qun Li

Published in: Archive of Applied Mechanics | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The conversion problem of plane strain fracture toughness (\(K_\mathrm{IC}\)) which is necessarily measured according to ASTM standards, to lower constraint applications generally existing in engineering structures, has led to extensive material and labor costs. The present paper explores and quantifies the crack-tip constraint effects by the crack-tip plastic zone to serve the prediction of material’s fracture toughness. Firstly, the approximate three-dimensional crack front displacement fields are obtained by using the variable separation method. The three-dimensional stress field is then used to predict the shape and size of the crack-tip plastic zone. Secondly, the two-dimensional in-plane and the three-dimensional out-of-plane geometric constraint effects are quantified separately, and two constraint factors, i.e., \(\alpha _\mathrm{in}\) and \(\alpha _\mathrm{out}\) are proposed. A series of configurations of the two-dimensional and three-dimensional crack-tip plastic zones that vary with the specimen’s geometric size (plate width, thickness, etc.) are presented, which will facilitate a better understanding of the crack-tip constraint effect. Finally, the present method is applied to elucidate the significant “thickness effect” of the X70 pipeline steel’s fracture toughness by using the out-of-plane constraint factor \(\alpha _\mathrm{out}\). The corresponding results are compared with the experimentally measured and FEM-predicted fracture toughness \(K_\mathrm{C}\). It is concluded that the parameters \(\alpha _\mathrm{out}\) and the fracture toughness \(K_\mathrm{C}\) can be correlated with each other, which will be beneficial to the prediction of material’s fracture toughness and the avoidance of experimental costs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference GB/T 4161: Metallic materials-Determination of plane-strain fracture toughness (2007) GB/T 4161: Metallic materials-Determination of plane-strain fracture toughness (2007)
2.
go back to reference ASTM E1820-11: Standard test method for measurement of fracture toughness. American Society for Testing and Materials (2011) ASTM E1820-11: Standard test method for measurement of fracture toughness. American Society for Testing and Materials (2011)
3.
go back to reference Nevalainen, M., Dodds, R.H.: Numerical investigation of 3-D constraint effects on brittle fracture in SE (B) and C (T) specimens. Int. J. Fract. 74, 131–161 (1996)CrossRef Nevalainen, M., Dodds, R.H.: Numerical investigation of 3-D constraint effects on brittle fracture in SE (B) and C (T) specimens. Int. J. Fract. 74, 131–161 (1996)CrossRef
4.
go back to reference Masanori, K.: Study on the effect of the crack length on the \(\text{ J }_{Ic}\) value. Nucl. Eng. Des. 174, 41–49 (1997)CrossRef Masanori, K.: Study on the effect of the crack length on the \(\text{ J }_{Ic}\) value. Nucl. Eng. Des. 174, 41–49 (1997)CrossRef
5.
go back to reference Wang, H.W., Kang, Y.L., Zhang, Z.F., Qin, Q.H.: Size effect on the fracture toughness of metallic foil. Int. J. Fract. 123, 177–185 (2003)CrossRef Wang, H.W., Kang, Y.L., Zhang, Z.F., Qin, Q.H.: Size effect on the fracture toughness of metallic foil. Int. J. Fract. 123, 177–185 (2003)CrossRef
6.
go back to reference Kang, Y.L., Zhang, Z.F., Wang, H.W., Qin, Q.H.: Experimental investigations of the effect of thickness on fracture toughness of metallic foils. Mater. Sci. Eng. A 394, 312–319 (2005)CrossRef Kang, Y.L., Zhang, Z.F., Wang, H.W., Qin, Q.H.: Experimental investigations of the effect of thickness on fracture toughness of metallic foils. Mater. Sci. Eng. A 394, 312–319 (2005)CrossRef
7.
go back to reference Mostafavi, M., Smith, D.J., Pavier, M.J.: Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue Fract. Eng. Mater. Struct. 33, 724–739 (2010) Mostafavi, M., Smith, D.J., Pavier, M.J.: Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue Fract. Eng. Mater. Struct. 33, 724–739 (2010)
8.
go back to reference Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraints with fracture toughness. Fatigue Fract. Eng. Mater. Struct. 37, 132–145 (2014)CrossRef Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraints with fracture toughness. Fatigue Fract. Eng. Mater. Struct. 37, 132–145 (2014)CrossRef
9.
go back to reference Mu, M.Y., Wang, G.Z., Tu, S.T., Xuan, F.Z.: Three-dimensional analyses of in-plane and out-of-plane crack-tip constraint characterization for fracture specimens. Fatigue Fract. Eng. Mater. Struct. 39, 1461–1476 (2016)CrossRef Mu, M.Y., Wang, G.Z., Tu, S.T., Xuan, F.Z.: Three-dimensional analyses of in-plane and out-of-plane crack-tip constraint characterization for fracture specimens. Fatigue Fract. Eng. Mater. Struct. 39, 1461–1476 (2016)CrossRef
10.
go back to reference Kim, J., Zhang, G.H., Gao, X.S.: Modeling of ductile fracture: application of the mechanism-based concepts. Int. J. Solids Struct. 44, 1844–1862 (2007)CrossRefMATH Kim, J., Zhang, G.H., Gao, X.S.: Modeling of ductile fracture: application of the mechanism-based concepts. Int. J. Solids Struct. 44, 1844–1862 (2007)CrossRefMATH
11.
go back to reference Hancock, J.W., Du, Z.Z.: Two parameters characterization of elastic–plastic crack-tip fields. J. Appl. Mech. 113, 104–110 (1991) Hancock, J.W., Du, Z.Z.: Two parameters characterization of elastic–plastic crack-tip fields. J. Appl. Mech. 113, 104–110 (1991)
12.
go back to reference Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., Howard, I.C.: A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks. In: Size Effects in Fracture. London: Mechanical Engineering Publications Limited, pp. 37–46 (1986) Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., Howard, I.C.: A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks. In: Size Effects in Fracture. London: Mechanical Engineering Publications Limited, pp. 37–46 (1986)
13.
go back to reference Sumpter, J.D.G.: An experimental investigation of the T-stress approach. Constraint effects in fracture. ASTM STP 1171, 492–502 (1993) Sumpter, J.D.G.: An experimental investigation of the T-stress approach. Constraint effects in fracture. ASTM STP 1171, 492–502 (1993)
14.
go back to reference Tregoning, R.L., Joyce, J.A.: Application of T-stress based constraint correction to A533B steel fracture toughness data. Fatigue and fracture mechanics. ASTM STP 1417(33), 307–327 (2002) Tregoning, R.L., Joyce, J.A.: Application of T-stress based constraint correction to A533B steel fracture toughness data. Fatigue and fracture mechanics. ASTM STP 1417(33), 307–327 (2002)
15.
go back to reference O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—I: structure of fields. J. Mech. Phys. Solids 39, 989–1015 (1991)CrossRef O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—I: structure of fields. J. Mech. Phys. Solids 39, 989–1015 (1991)CrossRef
16.
go back to reference O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—II: fracture applications. J. Mech. Phys. Solids 40, 939–963 (1992)CrossRef O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—II: fracture applications. J. Mech. Phys. Solids 40, 939–963 (1992)CrossRef
17.
go back to reference O’ Dowd, N.P.: Application of two parameter approaches in elastic–plastic fracture mechanics. Eng. Fract. Mech. 52, 445–465 (1995)CrossRef O’ Dowd, N.P.: Application of two parameter approaches in elastic–plastic fracture mechanics. Eng. Fract. Mech. 52, 445–465 (1995)CrossRef
18.
go back to reference O’Dowd N.P., Shih, C.F.: Two-parameter fracture mechanics: theory and applications. In: Fracture mechanics. ASTM STP 1207, vol. 24, pp. 21–47 (2002) O’Dowd N.P., Shih, C.F.: Two-parameter fracture mechanics: theory and applications. In: Fracture mechanics. ASTM STP 1207, vol. 24, pp. 21–47 (2002)
19.
go back to reference Yang, S.: Higher order asymptotic crack-tip fields in a power-law hardening material. Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina (1993) Yang, S.: Higher order asymptotic crack-tip fields in a power-law hardening material. Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina (1993)
20.
go back to reference Yang, S., Chao, Y.J., Sutton, M.A.: Higher-order asymptotic fields in a power-law hardening material. Eng. Fract. Mech. 45, 1–20 (1993)CrossRef Yang, S., Chao, Y.J., Sutton, M.A.: Higher-order asymptotic fields in a power-law hardening material. Eng. Fract. Mech. 45, 1–20 (1993)CrossRef
21.
go back to reference Chao, Y.J., Yang, S., Sutton, M.A.: On the fracture of solids characterized by one or two parameters: theory and practice. J. Mech. Phys. Solids 42, 629–647 (1994)CrossRef Chao, Y.J., Yang, S., Sutton, M.A.: On the fracture of solids characterized by one or two parameters: theory and practice. J. Mech. Phys. Solids 42, 629–647 (1994)CrossRef
22.
go back to reference Li, Y.C., Wang, Z.Q.: High-order asymptotic field of tensile plane-strain nonlinear crack problems. Sci. Sin. 29, 941–955 (1986)MATH Li, Y.C., Wang, Z.Q.: High-order asymptotic field of tensile plane-strain nonlinear crack problems. Sci. Sin. 29, 941–955 (1986)MATH
23.
go back to reference Sharma, S.M., Aravas, N.: Determination of higher-order terms in asymptotic elastoplastic crack tip solutions. J. Mech. Phys. Solids 39, 1043–1072 (1991)CrossRefMATH Sharma, S.M., Aravas, N.: Determination of higher-order terms in asymptotic elastoplastic crack tip solutions. J. Mech. Phys. Solids 39, 1043–1072 (1991)CrossRefMATH
24.
go back to reference Zhu, X.K., Joyce, J.A.: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 85, 1–46 (2012)CrossRef Zhu, X.K., Joyce, J.A.: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 85, 1–46 (2012)CrossRef
25.
go back to reference Irwin, G.R., Kies, J.A., Smith, H.L.: Fracture strengths relative to onset and arrest of crack propagation. Proc. Am. Soc. Test Mater. 58, 640–660 (1958) Irwin, G.R., Kies, J.A., Smith, H.L.: Fracture strengths relative to onset and arrest of crack propagation. Proc. Am. Soc. Test Mater. 58, 640–660 (1958)
26.
go back to reference Guo, W.L.: Elastoplastic three dimensional crack border field—I. Singular structure of the field. Eng. Fract. Mech. 46, 93–104 (1993)CrossRef Guo, W.L.: Elastoplastic three dimensional crack border field—I. Singular structure of the field. Eng. Fract. Mech. 46, 93–104 (1993)CrossRef
27.
go back to reference Guo, W.L.: Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field. Eng. Fract. Mech. 46, 105–113 (1993)CrossRef Guo, W.L.: Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field. Eng. Fract. Mech. 46, 105–113 (1993)CrossRef
28.
go back to reference Guo, W.L.: Elasto-plastic three-dimensional crack border field—III. Fracture parameters. Eng. Fract. Mech. 51, 51–71 (1995)CrossRef Guo, W.L.: Elasto-plastic three-dimensional crack border field—III. Fracture parameters. Eng. Fract. Mech. 51, 51–71 (1995)CrossRef
29.
go back to reference Shahani, A.R., Rastegar, M., Dehkordi, M.B., Moayeri, K.H.: Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets. Eng. Fract. Mech. 77, 646–659 (2010)CrossRef Shahani, A.R., Rastegar, M., Dehkordi, M.B., Moayeri, K.H.: Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets. Eng. Fract. Mech. 77, 646–659 (2010)CrossRef
30.
go back to reference Meshii, T., Tanaka, T.: Experimental T\(_{33}\)-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 77, 867–877 (2010)CrossRef Meshii, T., Tanaka, T.: Experimental T\(_{33}\)-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 77, 867–877 (2010)CrossRef
31.
go back to reference Meshii, T., Lu, K., Takamura, R.: A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 104, 184–197 (2013)CrossRef Meshii, T., Lu, K., Takamura, R.: A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 104, 184–197 (2013)CrossRef
32.
go back to reference Lu, K., Meshii, T.: Application of T\(_{33}\)-stress to predict the lower bound fracture toughness for increasing the test specimen thickness in the transition temperature region. Adv. Mater. Sci. Eng. 16, 2899–2906 (2014) Lu, K., Meshii, T.: Application of T\(_{33}\)-stress to predict the lower bound fracture toughness for increasing the test specimen thickness in the transition temperature region. Adv. Mater. Sci. Eng. 16, 2899–2906 (2014)
33.
go back to reference Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—part 1 stress-state ahead of the crack tip. Int. J. Press. Ves. Pip. 93, 42–50 (2012)CrossRef Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—part 1 stress-state ahead of the crack tip. Int. J. Press. Ves. Pip. 93, 42–50 (2012)CrossRef
34.
go back to reference Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—Part 2 constraint and material variations. Int. J. Press. Ves. Pip. 94, 51–56 (2012)CrossRef Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—Part 2 constraint and material variations. Int. J. Press. Ves. Pip. 94, 51–56 (2012)CrossRef
35.
go back to reference Shlyannikov, V.N., Boychenko, N.V., Tumanov, A.V., Fernandez-Canteli, A.: The elastic and plastic constraint parameters for three-dimensional problems. Eng. Fract. Mech. 127, 83–96 (2014)CrossRef Shlyannikov, V.N., Boychenko, N.V., Tumanov, A.V., Fernandez-Canteli, A.: The elastic and plastic constraint parameters for three-dimensional problems. Eng. Fract. Mech. 127, 83–96 (2014)CrossRef
36.
go back to reference Folias, E.S.: On the three-dimensional theory of cracked plates. J. Appl. Mech. 42, 663–674 (1975)CrossRefMATH Folias, E.S.: On the three-dimensional theory of cracked plates. J. Appl. Mech. 42, 663–674 (1975)CrossRefMATH
37.
go back to reference Kotousov, A., Lazzarin, P., Berto, F., Pook, L.P.: Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Eng. Fract. Mech. 108, 65–74 (2013)CrossRef Kotousov, A., Lazzarin, P., Berto, F., Pook, L.P.: Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Eng. Fract. Mech. 108, 65–74 (2013)CrossRef
38.
go back to reference Lazzarin, P., Zappalorto, M., Berto, F.: Three-dimensional stress fields due to notches in plates under linear elastic and elastic–plastic conditions. Fatigue Fract. Eng. Mater. Struct. 38, 140–153 (2015)CrossRef Lazzarin, P., Zappalorto, M., Berto, F.: Three-dimensional stress fields due to notches in plates under linear elastic and elastic–plastic conditions. Fatigue Fract. Eng. Mater. Struct. 38, 140–153 (2015)CrossRef
39.
go back to reference Pook, L.P.: A fifty year retrospective review of three dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mater. Struct. 36, 699–723 (2013)CrossRef Pook, L.P.: A fifty year retrospective review of three dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mater. Struct. 36, 699–723 (2013)CrossRef
40.
go back to reference Irwin, G.R.: Fracture testing of high-strength sheet materials under conditions appropriate for stress analysis. US Naval Research Laboratory (1960) Irwin, G.R.: Fracture testing of high-strength sheet materials under conditions appropriate for stress analysis. US Naval Research Laboratory (1960)
41.
go back to reference ASTM E561-10. Standard test method for K-R curve determination. American Society for Testing and Materials (2011) ASTM E561-10. Standard test method for K-R curve determination. American Society for Testing and Materials (2011)
42.
go back to reference ASTM E2472-06e1. Standard test method for determination of resistance to stable crack extension under low-constraint conditions. American Society for Testing and Materials (2011) ASTM E2472-06e1. Standard test method for determination of resistance to stable crack extension under low-constraint conditions. American Society for Testing and Materials (2011)
43.
go back to reference Anderson, T.L., Dodds, R.H.: Specimen size requirements for fracture toughness testing in the transition region. J. Test. Eval. 19, 123–134 (1991)CrossRef Anderson, T.L., Dodds, R.H.: Specimen size requirements for fracture toughness testing in the transition region. J. Test. Eval. 19, 123–134 (1991)CrossRef
44.
go back to reference Theiss, T.J., Bryson, J.W.: Influence of crack depth on fracture toughness of reactor pressure vessel steel. In: Constraint Effects in Fracture, ASTM STP 1171: Baltimore, MD, pp. 104–119 (1993) Theiss, T.J., Bryson, J.W.: Influence of crack depth on fracture toughness of reactor pressure vessel steel. In: Constraint Effects in Fracture, ASTM STP 1171: Baltimore, MD, pp. 104–119 (1993)
45.
go back to reference Mostafavi, M., Pavier, M.J., Smith, D.J.: Unified measure of constraint, ESIA10: Manchester, UK (2009) Mostafavi, M., Pavier, M.J., Smith, D.J.: Unified measure of constraint, ESIA10: Manchester, UK (2009)
46.
go back to reference Mostafavi, M., Smith, D.J., Pavier, M.J.: Fracture of aluminium alloy 2024 under biaxial and triaxial loading. Eng. Fract. Mech. 78, 1705–1716 (2011)CrossRef Mostafavi, M., Smith, D.J., Pavier, M.J.: Fracture of aluminium alloy 2024 under biaxial and triaxial loading. Eng. Fract. Mech. 78, 1705–1716 (2011)CrossRef
47.
go back to reference Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. Fatigue Fract. Eng. Mater. Struct. 36, 504–514 (2013)CrossRef Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. Fatigue Fract. Eng. Mater. Struct. 36, 504–514 (2013)CrossRef
48.
go back to reference Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Eng. Fract. Mech. 115, 296–307 (2014)CrossRef Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Eng. Fract. Mech. 115, 296–307 (2014)CrossRef
49.
go back to reference Yan, B.R., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Establishment of unified correlation of in-plain and out-of-plain constraints with ductile fracture toughness of steel. Appl. Mech. Mater. 853, 22–27 (2016)CrossRef Yan, B.R., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Establishment of unified correlation of in-plain and out-of-plain constraints with ductile fracture toughness of steel. Appl. Mech. Mater. 853, 22–27 (2016)CrossRef
50.
go back to reference Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel. Int. J. Fract. 190, 87–98 (2014)CrossRef Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel. Int. J. Fract. 190, 87–98 (2014)CrossRef
51.
go back to reference Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of wide range of in-plane and out-of-plane constraints with cleavage fracture toughness. Theor. Appl. Fract. Mech. 80, 121–132 (2015)CrossRef Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of wide range of in-plane and out-of-plane constraints with cleavage fracture toughness. Theor. Appl. Fract. Mech. 80, 121–132 (2015)CrossRef
52.
go back to reference Roychoudhury, S., Dodds, R.H.: A numerical investigation of 3-D small-scale yielding fatigue crack growth. Eng. Fract. Mech. 70, 2363–2383 (2003)CrossRef Roychoudhury, S., Dodds, R.H.: A numerical investigation of 3-D small-scale yielding fatigue crack growth. Eng. Fract. Mech. 70, 2363–2383 (2003)CrossRef
53.
go back to reference Kudari, S.K., Kodancha, K.G.: 3D finite element analysis on crack-tip plastic zone. Int. J. Eng. Sci. Technol. 2, 47–58 (2010)CrossRef Kudari, S.K., Kodancha, K.G.: 3D finite element analysis on crack-tip plastic zone. Int. J. Eng. Sci. Technol. 2, 47–58 (2010)CrossRef
54.
go back to reference Jensen, H.M.: Three dimensional finite element calculations of crack tip plastic zones and K\(_{IC}\) specimen size requirements. ECF15, Stockolm (2013) Jensen, H.M.: Three dimensional finite element calculations of crack tip plastic zones and K\(_{IC}\) specimen size requirements. ECF15, Stockolm (2013)
55.
go back to reference Parks, D.M., Wang, Y.Y.: Elastic-plastic analysis of part-through surface cracks. Anal. Num. Exp. Asp. Three Dimens. Fract. Process. 8, 19–32 (1988) Parks, D.M., Wang, Y.Y.: Elastic-plastic analysis of part-through surface cracks. Anal. Num. Exp. Asp. Three Dimens. Fract. Process. 8, 19–32 (1988)
56.
go back to reference Nakamura, T., Parks, D.M.: Three-dimensional crack front fields in a thin ductile plate. J. Mech. Phys. Solids 38, 787–812 (1990)CrossRef Nakamura, T., Parks, D.M.: Three-dimensional crack front fields in a thin ductile plate. J. Mech. Phys. Solids 38, 787–812 (1990)CrossRef
57.
go back to reference Faleskog, J.: Effects of local constraint along three-dimensional crack fronts—a numerical and experimental investigation. J. Mech. Phys. Solids 43, 447–493 (1995)CrossRef Faleskog, J.: Effects of local constraint along three-dimensional crack fronts—a numerical and experimental investigation. J. Mech. Phys. Solids 43, 447–493 (1995)CrossRef
58.
go back to reference Yuan, H., Brocks, W.: Quantification of constraint effects in elastic–plastic crack front fields. J. Mech. Phys. Solids 46, 219–241 (1998)CrossRefMATH Yuan, H., Brocks, W.: Quantification of constraint effects in elastic–plastic crack front fields. J. Mech. Phys. Solids 46, 219–241 (1998)CrossRefMATH
59.
go back to reference Huber, M.T.: Właściwa praca odkształcenia jako miara wytȩżenia materiału. Przyczynek do podstaw wytorymalosci. Czas. Tech. 22, 34–81 (1904). (in Polish) Huber, M.T.: Właściwa praca odkształcenia jako miara wytȩżenia materiału. Przyczynek do podstaw wytorymalosci. Czas. Tech. 22, 34–81 (1904). (in Polish)
60.
go back to reference Mises, R.: Mechanics of solids in plastic state. Gött. Nachr. Math. Phys. 4, 582–592 (1913). (in German) Mises, R.: Mechanics of solids in plastic state. Gött. Nachr. Math. Phys. 4, 582–592 (1913). (in German)
61.
go back to reference Hencky, H.: On the theory of plastic deformations. Z. Angew. Math. Mech. 4, 323–334 (1924). (in German) CrossRef Hencky, H.: On the theory of plastic deformations. Z. Angew. Math. Mech. 4, 323–334 (1924). (in German) CrossRef
62.
go back to reference yIrwin, G.R., Tada, H., Paris, P.C.: The stress analysis of cracks handbook. American Society of Mechanical Engineers. Three-Park Avenue, New York, NY, vol. 10016 (2000) yIrwin, G.R., Tada, H., Paris, P.C.: The stress analysis of cracks handbook. American Society of Mechanical Engineers. Three-Park Avenue, New York, NY, vol. 10016 (2000)
63.
go back to reference Lai, M.O., Ferguson, W.G.: Effect of specimen thickness on fracture toughness. Eng. Fract. Mech. 23, 649–659 (1986)CrossRef Lai, M.O., Ferguson, W.G.: Effect of specimen thickness on fracture toughness. Eng. Fract. Mech. 23, 649–659 (1986)CrossRef
64.
go back to reference Norman, T.L., Vashishth, D., Burr, D.B.: Fracture toughness of human bone under tension. J. Biomech. 28, 309–320 (1995)CrossRef Norman, T.L., Vashishth, D., Burr, D.B.: Fracture toughness of human bone under tension. J. Biomech. 28, 309–320 (1995)CrossRef
65.
go back to reference Zeng, Y.P., Zhu, P.Y., Tong, K.: Effect of microstructure on the low temperature toughness of high strength pipeline steels. Int. J. Min. Met. Mater. 22, 254–261 (2015)CrossRef Zeng, Y.P., Zhu, P.Y., Tong, K.: Effect of microstructure on the low temperature toughness of high strength pipeline steels. Int. J. Min. Met. Mater. 22, 254–261 (2015)CrossRef
66.
go back to reference ASTM E 1921-97. Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range. Annual Book of ASTM Standard, vol 3.01, West Conshohocken, PA (1998) ASTM E 1921-97. Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range. Annual Book of ASTM Standard, vol 3.01, West Conshohocken, PA (1998)
Metadata
Title
Theoretical approach of characterizing the crack-tip constraint effects associated with material’s fracture toughness
Authors
Junnan Lv
Li Yu
Wei Du
Qun Li
Publication date
14-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1392-8

Other articles of this Issue 9/2018

Archive of Applied Mechanics 9/2018 Go to the issue

Premium Partners