Skip to main content
Top
Published in: Metallurgist 11-12/2020

19-03-2020

Theoretical Bases and Technology of Steel Exhaustive Metal Desulfurization and Direct Microalloying with Boron Beneath Basic Boron-Containing Slags

Authors: A. A. Babenko, L. A. Smirnov, A. G. Upolovnikova, A. N. Smetannikov, A. V. Sychev

Published in: Metallurgist | Issue 11-12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Results of theoretical and experimental studies of the physicochemical properties of slags of the CaO–SiO2–B2O3 system containing 15% Al2O3 and 8% MgO lie at the basis for the development of technology for exhaustive desulfurization of metal beneath basic boron-containing slags formed in a steelpouring ladle in a ladle-furnace unit (LFU), and steel direct microalloying with boron. Methods of simplex lattice planning of an experiment, a software complex HSC 6.1 Chemistry (Outokumpu), and the method of electro-vibration viscosimetry are used. Results of thermodynamic modeling of the effect of slag basicity and B2O3 content on sulfur and boron equilibrium distribution coefficient between slag of the oxide system under study and low-carbon metal are presented. The quantitative effect of basicity and B2O3 content on slag viscosity containing 15% Al2O3 and 8% MgO at a temperature of 1600°C and the influence of the slag chemical composition of the oxide system under study on the degree of wear of periclase-carbon refractory material are shown. Results of studying physicochemical properties of slags of the CaO–SiO2–B2O3 system containing 15% Al2O3 and 8% MgO are a basis for developing a ladle slag composition with low viscosity and providing exhaustive metal desulfurization, and direct microalloying of boron steel with low corrosive effect on periclase-carbon refractories. Development of this technology provides, depending on the steel grade, a boron content of 0.001–0.008%, low metal sulfur concentration at 0.004–0.014%, a reduction in manganese ferroalloy consumption from 0.5 kg/ton of steel 08KP to 1.4 kg/ton of steel 09G2S, exclusion of ferroboron and fluorspar additives in the ladle, and achievement of good finished metal product mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
M. F. Vitushchenko, A. A. Dobromilov, Kh. Zh. Kutdusova, V. I. Romanov, V. S. Gulyakov, N. I. Sel’menskikh, V. P. Ermakova, and V. G. Smirnova participated in this work.
 
Literature
1.
go back to reference D. A. Dyudkin, Steel Production. Vol. 3. Steel Extra-Furnace Metallurgy [in Russian], Teplotekhnik, Moscow (2010). D. A. Dyudkin, Steel Production. Vol. 3. Steel Extra-Furnace Metallurgy [in Russian], Teplotekhnik, Moscow (2010).
2.
go back to reference S. M Chumakov, “Concept of producing low-sulfur steels OAO Severstal’ taking account of production aspects,” Proc. VI Congr. of Steel Smelters, Moscow, AO Chermetinformatsiya (2001). S. M Chumakov, “Concept of producing low-sulfur steels OAO Severstal’ taking account of production aspects,” Proc. VI Congr. of Steel Smelters, Moscow, AO Chermetinformatsiya (2001).
3.
go back to reference G. A. Sokolov, Steel Extra-Furnace Refining [in Russian], Metallurgiya, Moscow (1977). G. A. Sokolov, Steel Extra-Furnace Refining [in Russian], Metallurgiya, Moscow (1977).
4.
go back to reference Ya. E. Gol’dshtein, Modification and Microalloying of Cast Iron and Steel [in Russian], Metallurgiya, Moscow (1986). Ya. E. Gol’dshtein, Modification and Microalloying of Cast Iron and Steel [in Russian], Metallurgiya, Moscow (1986).
5.
go back to reference V. L. Pilyushenko, Scientific and Production Bases of Steel Microalloying [in Russian], Metallurgiya, Moscow (2000). V. L. Pilyushenko, Scientific and Production Bases of Steel Microalloying [in Russian], Metallurgiya, Moscow (2000).
6.
go back to reference N. P. Lyakishev, Boron-Containing Steels and Alloys [in Russian], Metallurgiya, Moscow (1986). N. P. Lyakishev, Boron-Containing Steels and Alloys [in Russian], Metallurgiya, Moscow (1986).
7.
go back to reference A. A. Babenko, V. I. Zhuchkov, and L. N. Leont’ev, “Microalloying steel with boron. A promising area for improving the competitiveness of domestic metal products. Prospects for developing metallurgy and engineering using improved fundamental research of NIOKR,” Proc. Sci.-Pract. Conf., Ekaterinburg, OOO UIPTs (2013). A. A. Babenko, V. I. Zhuchkov, and L. N. Leont’ev, “Microalloying steel with boron. A promising area for improving the competitiveness of domestic metal products. Prospects for developing metallurgy and engineering using improved fundamental research of NIOKR,” Proc. Sci.-Pract. Conf., Ekaterinburg, OOO UIPTs (2013).
8.
go back to reference E. M. Krivko, P. I. Chub, and R. P Gonovalov, “Microalloying rimmed steel with boron with reduction from its oxides,” in: Steel Pouring and Inclusions, Coll. MChM SSSR, Metallurgiya, Moscow (1984), pp. 24–25. E. M. Krivko, P. I. Chub, and R. P Gonovalov, “Microalloying rimmed steel with boron with reduction from its oxides,” in: Steel Pouring and Inclusions, Coll. MChM SSSR, Metallurgiya, Moscow (1984), pp. 24–25.
9.
go back to reference S. M. Vinorov (editor), Boron, Calcium, Niobium, and Zirconium in Cast Iron and Steel [in Russian], GNTsI, Chern. Tsvet. Met., Moscow (1961). S. M. Vinorov (editor), Boron, Calcium, Niobium, and Zirconium in Cast Iron and Steel [in Russian], GNTsI, Chern. Tsvet. Met., Moscow (1961).
10.
go back to reference F. B. Pickering, Steel Physical Properties and Development [Russian translation], Metallurgiya, Moscow (1982). F. B. Pickering, Steel Physical Properties and Development [Russian translation], Metallurgiya, Moscow (1982).
11.
go back to reference A. A. Akberdin, I. S. Kulikov, V. A. Kim, et al., Physical Properties of melts of the CaO–SiO2–Al2O3–MgO–CaF System [in Russian], Metallurgiya, Moscow (1987). A. A. Akberdin, I. S. Kulikov, V. A. Kim, et al., Physical Properties of melts of the CaO–SiO2–Al2O3–MgO–CaF System [in Russian], Metallurgiya, Moscow (1987).
12.
go back to reference D. Ya. Povolotskii, V. E. Roshchin, V. P. Gribanov, et al., “Effect of SiO2 on slag volatility of the CaF2–MgO–Al2O3 system,” Izv. Vuz., Chern. Met., No. 8, 39–42 (1982). D. Ya. Povolotskii, V. E. Roshchin, V. P. Gribanov, et al., “Effect of SiO2 on slag volatility of the CaF2–MgO–Al2O3 system,” Izv. Vuz., Chern. Met., No. 8, 39–42 (1982).
13.
go back to reference A. I. Zaitsev, B. M. Mogutnov, and E. Kh. Shakhpazov, Physical Chemistry of Metallurgical Slags [in Russian], Interkontakt Nauka, Moscow (2008). A. I. Zaitsev, B. M. Mogutnov, and E. Kh. Shakhpazov, Physical Chemistry of Metallurgical Slags [in Russian], Interkontakt Nauka, Moscow (2008).
14.
go back to reference W. Hongming, Z. Tingwing and Z. Hua, “Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaObased refining flux,” ISIJ International, 51, No. 5, 702–708 (2011).CrossRef W. Hongming, Z. Tingwing and Z. Hua, “Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaObased refining flux,” ISIJ International, 51, No. 5, 702–708 (2011).CrossRef
15.
go back to reference A. A. Akberdin, G. M. Kireeva, and I. A. Medvedovskaya, “Effect of B2O3 on viscosity of CaO–SiO2–Al2O3 slags,” Izv. Akad. Nauk. SSSR, Metally, No. 3, 55–56 (1986). A. A. Akberdin, G. M. Kireeva, and I. A. Medvedovskaya, “Effect of B2O3 on viscosity of CaO–SiO2–Al2O3 slags,” Izv. Akad. Nauk. SSSR, Metally, No. 3, 55–56 (1986).
16.
go back to reference A. A. Babenko, S. A. Istomin, E. V. Protopopov, et al., “Viscosity of slags of the CaO–SiO2–Al2O3 system,” Izv. Vuz., Chern. Met., No. 2, 41–43 (2014). A. A. Babenko, S. A. Istomin, E. V. Protopopov, et al., “Viscosity of slags of the CaO–SiO2–Al2O3 system,” Izv. Vuz., Chern. Met., No. 2, 41–43 (2014).
17.
go back to reference V. A. Kim, É. N. Nikolai, A. A. Akberdin, et al., Planning and experiment in Studying Physicochemical Properties of Metallurgical Slags. Procedural Guide [in Russian], Nauka, Alma-Ata (1989). V. A. Kim, É. N. Nikolai, A. A. Akberdin, et al., Planning and experiment in Studying Physicochemical Properties of Metallurgical Slags. Procedural Guide [in Russian], Nauka, Alma-Ata (1989).
18.
go back to reference A. Roine, “HSC 6.0 chemistry reactions and equilibrium software with extensive thermochemical database and Flowshut,” Outokumpu Research Oy, Pori (2006). A. Roine, “HSC 6.0 chemistry reactions and equilibrium software with extensive thermochemical database and Flowshut,” Outokumpu Research Oy, Pori (2006).
19.
go back to reference P. P. Arsent’ev, V. V. Yakovlev, M. G. Krasheninnikov, A. A. Pronin, and E. S. Filippov, Physicochemical Methods for Studying Metallurgical Processes. High School Textbook [in Russian], Metallurgiya, Moscow 91988). P. P. Arsent’ev, V. V. Yakovlev, M. G. Krasheninnikov, A. A. Pronin, and E. S. Filippov, Physicochemical Methods for Studying Metallurgical Processes. High School Textbook [in Russian], Metallurgiya, Moscow 91988).
20.
go back to reference S. I Popel’, A. I. Sotnikov, and V. N. Boronyankov, Metallurgical Process Theory [in Russian], Metallurgiya, Moscow (1986). S. I Popel’, A. I. Sotnikov, and V. N. Boronyankov, Metallurgical Process Theory [in Russian], Metallurgiya, Moscow (1986).
21.
go back to reference A. A. Akberdin, G. M. Kireeva, and I. A. Medvedovskaya, “Effect of B2O3 on slag viscosity of the CaF2–MgO–Al2O3 system,” Akad. Nauk SSSR, Izvest. Ser. Metally, No. 3, 55–56 (1986). A. A. Akberdin, G. M. Kireeva, and I. A. Medvedovskaya, “Effect of B2O3 on slag viscosity of the CaF2–MgO–Al2O3 system,” Akad. Nauk SSSR, Izvest. Ser. Metally, No. 3, 55–56 (1986).
22.
go back to reference V. I. Yavoiskii and A. V. Yavoiskii, Scientific Bases of Contemporary Steel Production Processes [in Russian], Metallurgiya, Moscow 91987). V. I. Yavoiskii and A. V. Yavoiskii, Scientific Bases of Contemporary Steel Production Processes [in Russian], Metallurgiya, Moscow 91987).
23.
go back to reference A. A. Babenko, V. I. Zhuchkov, L. I. Leont’ev, and A. G. Upolovnikova, “Equilibrium distribution of boron between a Fe–C–Si–Al system and boron-containing slag,” Izv. Vuz., Chern. Met.,60, No. 9, 752–758 (2017). A. A. Babenko, V. I. Zhuchkov, L. I. Leont’ev, and A. G. Upolovnikova, “Equilibrium distribution of boron between a Fe–C–Si–Al system and boron-containing slag,” Izv. Vuz., Chern. Met.,60, No. 9, 752–758 (2017).
24.
go back to reference É. Shyurman, G. Mann, D. Nole, et al., “Effect of dissolving MgO on life of a dolomite lining of oxygen converters,” Chern. Met., No. 33–41 (1985). É. Shyurman, G. Mann, D. Nole, et al., “Effect of dissolving MgO on life of a dolomite lining of oxygen converters,” Chern. Met., No. 33–41 (1985).
25.
go back to reference A. A. Babenko, V. I. Zhuchkov, L. A. Smirnov, et al., “Study and development of comprehensive technology for producing lowcarbon boron-containing steel with low sulfur content,” Stal’, No. 11, 48–50 (2015). A. A. Babenko, V. I. Zhuchkov, L. A. Smirnov, et al., “Study and development of comprehensive technology for producing lowcarbon boron-containing steel with low sulfur content,” Stal’, No. 11, 48–50 (2015).
26.
go back to reference A. A. Babenko, V. I. Zhuchkov, E. N. Selivanov, et al., RF Patent 2562849, МPК С21С 7/076. Slag mixture for steel treatment in a ladle, Claim 06.11.2014, Publ. 09.10, 2015, Bull. No. 25. A. A. Babenko, V. I. Zhuchkov, E. N. Selivanov, et al., RF Patent 2562849, МPК С21С 7/076. Slag mixture for steel treatment in a ladle, Claim 06.11.2014, Publ. 09.10, 2015, Bull. No. 25.
Metadata
Title
Theoretical Bases and Technology of Steel Exhaustive Metal Desulfurization and Direct Microalloying with Boron Beneath Basic Boron-Containing Slags
Authors
A. A. Babenko
L. A. Smirnov
A. G. Upolovnikova
A. N. Smetannikov
A. V. Sychev
Publication date
19-03-2020
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2020
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-00937-6

Other articles of this Issue 11-12/2020

Metallurgist 11-12/2020 Go to the issue

Premium Partners