Skip to main content
Top

2017 | OriginalPaper | Chapter

31. Theoretical Studies of Structural and Electronic Properties of Clusters

Author : Michael Springborg

Published in: Handbook of Computational Chemistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clusters contain more than just some few atoms but not so many that they can be considered as being infinite. By varying their size, their properties can often be varied in a more or less controllable way. Often, however, the precise relation between size and property is largely unknown: the sizes of the systems are below the thermodynamic limit so that simple scaling laws do not apply. Theoretical studies of such systems can provide relevant information, although in many cases idealized systems have to be treated. The challenge of such calculations is the combination of the relatively large size of the systems together with an often unknown structure. In this presentation, different theoretical methods for circumventing these problems shall be discussed. They shall be illustrated through applications on various types of clusters. These include isolated metal clusters with one or two types of atoms, metal clusters deposited on a surface, nanostructured HAlO, semiconductor nanoparticles, and metallocarbohedrenes. Special emphasis is put on the construction of descriptors that can be used in identifying general trends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alamanova, D., Grigoryan, V. G., & Springborg, M. (2006). Theoretical study of structure and energetics of gold clusters with the EAM method. Zeitschrift für Physikalische Chemie, 220, 811–829.CrossRef Alamanova, D., Grigoryan, V. G., & Springborg, M. (2006). Theoretical study of structure and energetics of gold clusters with the EAM method. Zeitschrift für Physikalische Chemie, 220, 811–829.CrossRef
go back to reference Alamanova, D., Grigoryan, V. G., & Springborg, M. (2008). Deposition of copper clusters on the Cu(111) surface. Surface Science, 602, 1413–1422.CrossRef Alamanova, D., Grigoryan, V. G., & Springborg, M. (2008). Deposition of copper clusters on the Cu(111) surface. Surface Science, 602, 1413–1422.CrossRef
go back to reference Alamanova, D., Springborg, M., & Grigoryan, V. G. (2007). Theoretical study of the structure and energetics of silver clusters. Journal of Physical Chemistry C, 111, 12577–12587.CrossRef Alamanova, D., Springborg, M., & Grigoryan, V. G. (2007). Theoretical study of the structure and energetics of silver clusters. Journal of Physical Chemistry C, 111, 12577–12587.CrossRef
go back to reference Asaduzzaman, A. Md., & Springborg, M. (2006). Structural and electronic properties of Si/Ge nanoparticles. Physical Review B, 74, 165406.CrossRef Asaduzzaman, A. Md., & Springborg, M. (2006). Structural and electronic properties of Si/Ge nanoparticles. Physical Review B, 74, 165406.CrossRef
go back to reference Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: Energetics, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77, 371–423.CrossRef Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: Energetics, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77, 371–423.CrossRef
go back to reference Blessing, N. (1998). Diplomarbeit, University of Konstanz, Konstanz. Blessing, N. (1998). Diplomarbeit, University of Konstanz, Konstanz.
go back to reference Brack, M. (1993). The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Reviews of Modern Physics, 65, 677–732.CrossRef Brack, M. (1993). The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Reviews of Modern Physics, 65, 677–732.CrossRef
go back to reference Bulusu, S., Li, X., Wang, L.-S., & Zeng, X. C. (2006). Evidence of hollow golden cages. Proceedings of the National Academy of Sciences of the United States of America, 103, 8326–8330. Bulusu, S., Li, X., Wang, L.-S., & Zeng, X. C. (2006). Evidence of hollow golden cages. Proceedings of the National Academy of Sciences of the United States of America, 103, 8326–8330.
go back to reference Cleri, F., & Rosato, V. (1993). Tight-binding potentials for transition metals and alloys. Physical Review B, 48, 22–33.CrossRef Cleri, F., & Rosato, V. (1993). Tight-binding potentials for transition metals and alloys. Physical Review B, 48, 22–33.CrossRef
go back to reference Dance, I. G. (1992). Geometric and electronic structures of [Ti8C12]: Analogies with C60. Journal of the Chemical Society, Chemical Communications, 1992, 1779–1780.CrossRef Dance, I. G. (1992). Geometric and electronic structures of [Ti8C12]: Analogies with C60. Journal of the Chemical Society, Chemical Communications, 1992, 1779–1780.CrossRef
go back to reference Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 50, 1285–1288.CrossRef Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 50, 1285–1288.CrossRef
go back to reference Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443–6453.CrossRef Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443–6453.CrossRef
go back to reference Daw, M. S., Foiles, S. M., & Baskes, M. I. (1993). The embedded-atom method: A review of theory and applications. Materials Science Reports, 9, 251–310.CrossRef Daw, M. S., Foiles, S. M., & Baskes, M. I. (1993). The embedded-atom method: A review of theory and applications. Materials Science Reports, 9, 251–310.CrossRef
go back to reference de Heer, W. A. (1993). The physics of simple metal clusters: Experimental aspects and simple models. Reviews of Modern Physics, 65, 611–676.CrossRef de Heer, W. A. (1993). The physics of simple metal clusters: Experimental aspects and simple models. Reviews of Modern Physics, 65, 611–676.CrossRef
go back to reference Dong, Y., Burkhart, M., Veith, M., & Springborg, M. (2005). Electronic and structural properties of nanostructured HAlO. Journal of Physical Chemistry B, 109, 22820–22829.CrossRef Dong, Y., Burkhart, M., Veith, M., & Springborg, M. (2005). Electronic and structural properties of nanostructured HAlO. Journal of Physical Chemistry B, 109, 22820–22829.CrossRef
go back to reference Dong, Y., & Springborg, M. (2007). Unbiased determination of structural and electronic properties of gold clusters with up to 58 atoms. Journal of Physical Chemistry C, 111, 12528–12535.CrossRef Dong, Y., & Springborg, M. (2007). Unbiased determination of structural and electronic properties of gold clusters with up to 58 atoms. Journal of Physical Chemistry C, 111, 12528–12535.CrossRef
go back to reference Dong, Y., Springborg, M., & Pang, Y., Morales Morillon, F. (2013a). Analyzing the properties of clusters: Structural similarity and heat capacity. Computational and Theoretical Chemistry, 1021, 16–25. Dong, Y., Springborg, M., & Pang, Y., Morales Morillon, F. (2013a). Analyzing the properties of clusters: Structural similarity and heat capacity. Computational and Theoretical Chemistry, 1021, 16–25.
go back to reference Dong, Y., Springborg, M., & Warnke, I. (2013b). Structural and thermodynamic properties of Au2−58 clusters. Progress in Theoretical Chemistry and Physics, 27, 181–193. Dong, Y., Springborg, M., & Warnke, I. (2013b). Structural and thermodynamic properties of Au2−58 clusters. Progress in Theoretical Chemistry and Physics, 27, 181–193.
go back to reference Ferrando, R., Jellinek, J., & Johnston, R. L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 846–910.CrossRef Ferrando, R., Jellinek, J., & Johnston, R. L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 846–910.CrossRef
go back to reference Finnis, M. W., & Sinclair, J. E. (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine A, 50, 45–55.CrossRef Finnis, M. W., & Sinclair, J. E. (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine A, 50, 45–55.CrossRef
go back to reference Foiles, S. M., Daw, M. S., & Baskes, M. I. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33, 7983–7991.CrossRef Foiles, S. M., Daw, M. S., & Baskes, M. I. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33, 7983–7991.CrossRef
go back to reference Frenzel, J., Joswig, J.-O., Sarkar, P., Seifert, G., & Springborg, M. (2005). The effects of organisation, embedding and surfactants on the properties od cadmium chalcogenide (CdS, CdSe and CdS/CdSe) semiconductor nanoparticles. European Journal of Inorganic Chemistry, 2005, 3585–3596.CrossRef Frenzel, J., Joswig, J.-O., Sarkar, P., Seifert, G., & Springborg, M. (2005). The effects of organisation, embedding and surfactants on the properties od cadmium chalcogenide (CdS, CdSe and CdS/CdSe) semiconductor nanoparticles. European Journal of Inorganic Chemistry, 2005, 3585–3596.CrossRef
go back to reference Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.
go back to reference Goswami, B., Pal, S., Sarkar, P., Seifert, G., & Springborg, M. (2006). Study of structural, electronic, and optical properties of Zn m Se n clusters. Physical Review B, 73, 205312.CrossRef Goswami, B., Pal, S., Sarkar, P., Seifert, G., & Springborg, M. (2006). Study of structural, electronic, and optical properties of Zn m Se n clusters. Physical Review B, 73, 205312.CrossRef
go back to reference Grigoryan, V. G., & Springborg, M. (2001). A theoretical study of the structure of Ni clusters (Ni N ). Physical Chemistry Chemical Physics, 3, 5125–5129.CrossRef Grigoryan, V. G., & Springborg, M. (2001). A theoretical study of the structure of Ni clusters (Ni N ). Physical Chemistry Chemical Physics, 3, 5125–5129.CrossRef
go back to reference Grigoryan, V. G., & Springborg, M. (2003). Structure and energetics of Ni clusters with up to 150 atoms. Chemical Physics Letters, 375, 219–226.CrossRef Grigoryan, V. G., & Springborg, M. (2003). Structure and energetics of Ni clusters with up to 150 atoms. Chemical Physics Letters, 375, 219–226.CrossRef
go back to reference Grigoryan, V. G., & Springborg, M. (2004). Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Physical Review B, 70, 205415.CrossRef Grigoryan, V. G., & Springborg, M. (2004). Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Physical Review B, 70, 205415.CrossRef
go back to reference Grigoryan, V. G., & Springborg, M. (2010). Vibrational and thermodynamic properties of metal clusters with up to 150 atoms calculated by the embedded-atom method. Physical Review B, 83, 155413.CrossRef Grigoryan, V. G., & Springborg, M. (2010). Vibrational and thermodynamic properties of metal clusters with up to 150 atoms calculated by the embedded-atom method. Physical Review B, 83, 155413.CrossRef
go back to reference Grigoryan, V. G., Alamanova, D., & Springborg, M. (2006). Structure and energetics of Cu N clusters with (2 ≤ N ≤ 150): An embedded-atom-method study. Physical Review B, 73, 115415.CrossRef Grigoryan, V. G., Alamanova, D., & Springborg, M. (2006). Structure and energetics of Cu N clusters with (2 ≤ N ≤ 150): An embedded-atom-method study. Physical Review B, 73, 115415.CrossRef
go back to reference Guo, B. C., Kearns, K. P., & Castleman Jr., A. W. (1992). Ti8C12 +-metallo-carbohedrenes: A new class of molecular clusters? Science, 255, 1411–1413.CrossRef Guo, B. C., Kearns, K. P., & Castleman Jr., A. W. (1992). Ti8C12 +-metallo-carbohedrenes: A new class of molecular clusters? Science, 255, 1411–1413.CrossRef
go back to reference Gupta, R. P. (1981). Lattice relaxation at a metal surface. Physical Review B, 23, 6265–6270.CrossRef Gupta, R. P. (1981). Lattice relaxation at a metal surface. Physical Review B, 23, 6265–6270.CrossRef
go back to reference Holland, J. H. (1975). Adaption in natural algorithms and artificial systems. Ann Arbor: University of Michigan Press. Holland, J. H. (1975). Adaption in natural algorithms and artificial systems. Ann Arbor: University of Michigan Press.
go back to reference Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B864–B871.CrossRef Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B864–B871.CrossRef
go back to reference Hristova, E., Dong, Y., Grigoryan, V. G., & Springborg, M. (2008a) Structural and energetic properties of Ni-Cu bimetallic clusters. Journal of Physical Chemistry A, 112, 7905–7915. Hristova, E., Dong, Y., Grigoryan, V. G., & Springborg, M. (2008a) Structural and energetic properties of Ni-Cu bimetallic clusters. Journal of Physical Chemistry A, 112, 7905–7915.
go back to reference Hristova, E., Grigoryan, V. G., & Springborg, M. (2008b) Structure and energetics of equiatomic K-Cs and Rb-Cs binary clusters. Journal of Chemical Physics, 128, 244513. Hristova, E., Grigoryan, V. G., & Springborg, M. (2008b) Structure and energetics of equiatomic K-Cs and Rb-Cs binary clusters. Journal of Chemical Physics, 128, 244513.
go back to reference Hristova, E., Grigoryan, V. G., & Springborg, M. (2009a) Theoretical study on the structural properties of alkali-metal heteroclusters. European Physical Journal D, 52, 35–38. Hristova, E., Grigoryan, V. G., & Springborg, M. (2009a) Theoretical study on the structural properties of alkali-metal heteroclusters. European Physical Journal D, 52, 35–38.
go back to reference Hristova, E., Grigoryan, V. G., & Springborg, M. (2009b) Structure and stability of Ag clusters on Ag (111) and Ni (111) surfaces. Surface Science, 603, 3339–3345. Hristova, E., Grigoryan, V. G., & Springborg, M. (2009b) Structure and stability of Ag clusters on Ag (111) and Ni (111) surfaces. Surface Science, 603, 3339–3345.
go back to reference Jellinek, J., & Krissinel, E. B. (1996). Ni n Al m alloy clusters: Analysis of structural forms and their energy ordering. Chemical Physics Letters, 258, 283–292.CrossRef Jellinek, J., & Krissinel, E. B. (1996). Ni n Al m alloy clusters: Analysis of structural forms and their energy ordering. Chemical Physics Letters, 258, 283–292.CrossRef
go back to reference Joswig, J.-O., Springborg, M. (2003). A genetic-algorithms search for global minima of aluminum clusters using a Sutton-Chen potential. Physical Review B, 68, 085408.CrossRef Joswig, J.-O., Springborg, M. (2003). A genetic-algorithms search for global minima of aluminum clusters using a Sutton-Chen potential. Physical Review B, 68, 085408.CrossRef
go back to reference Joswig, J.-O., & Springborg, M. (2007). Size-dependent structural and electronic properties of Ti n clusters (n ≤ 100). Journal of Physics: Condensed Matter, 19, 106207. Joswig, J.-O., & Springborg, M. (2007). Size-dependent structural and electronic properties of Ti n clusters (n ≤ 100). Journal of Physics: Condensed Matter, 19, 106207.
go back to reference Joswig, J.-O., & Springborg, M. (2008). The influence of C2 dimers on the stability of Ti m C n metcar clusters. Journal of Chemical Physics, 129, 134311.CrossRef Joswig, J.-O., & Springborg, M. (2008). The influence of C2 dimers on the stability of Ti m C n metcar clusters. Journal of Chemical Physics, 129, 134311.CrossRef
go back to reference Joswig, J.-O., Springborg, M., Seifert, G. (2000). Structural and electronic properties of cadmiumsulfide clusters. Journal of Physical Chemistry B, 104, 2617–2622.CrossRef Joswig, J.-O., Springborg, M., Seifert, G. (2000). Structural and electronic properties of cadmiumsulfide clusters. Journal of Physical Chemistry B, 104, 2617–2622.CrossRef
go back to reference Joswig, J.-O., Springborg, M., & Seifert, G. (2001). Structural and electronic properties of small titanium-carbon clusters (metcars). Physical Chemistry Chemical Physics, 3, 5130–5134.CrossRef Joswig, J.-O., Springborg, M., & Seifert, G. (2001). Structural and electronic properties of small titanium-carbon clusters (metcars). Physical Chemistry Chemical Physics, 3, 5130–5134.CrossRef
go back to reference Joswig, J.-O., Roy, S., Sarkar, P., & Springborg, M. (2002). Stability and band gap of semiconductor clusters. Chemical Physics Letters, 365, 75–81.CrossRef Joswig, J.-O., Roy, S., Sarkar, P., & Springborg, M. (2002). Stability and band gap of semiconductor clusters. Chemical Physics Letters, 365, 75–81.CrossRef
go back to reference Joswig, J.-O., Seifert, G., Niehaus, T. A., & Springborg, M. (2003). Optical properties of cadmium sulfide clusters. Journal of Physical Chemistry B, 107, 2897–2902.CrossRef Joswig, J.-O., Seifert, G., Niehaus, T. A., & Springborg, M. (2003). Optical properties of cadmium sulfide clusters. Journal of Physical Chemistry B, 107, 2897–2902.CrossRef
go back to reference Kasabova, E., Alamanova, D., Springborg, M., Grigoryan, V. G. (2007). Deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces. European Physical Journal D, 19, 425–431.CrossRef Kasabova, E., Alamanova, D., Springborg, M., Grigoryan, V. G. (2007). Deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces. European Physical Journal D, 19, 425–431.CrossRef
go back to reference Knight, W. D., Clemenger, K., de Heer, W. A., Saunders, W. A., Chou, M. Y., & Cohen, M. L. (1984). Electronic shell structure and abundances of sodium clusters. Physical Review Letters, 52, 2141–2143.CrossRef Knight, W. D., Clemenger, K., de Heer, W. A., Saunders, W. A., Chou, M. Y., & Cohen, M. L. (1984). Electronic shell structure and abundances of sodium clusters. Physical Review Letters, 52, 2141–2143.CrossRef
go back to reference Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138.CrossRef Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138.CrossRef
go back to reference Li, Z., & Scheraga, H. A. (1987). Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 84, 6611–6615. Li, Z., & Scheraga, H. A. (1987). Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 84, 6611–6615.
go back to reference Lifshitz, E., Dag, I., Litvin, I., Hodes, G., Gorer, S., Reisfeld, R., Zelner, M., & Minti, H. (1998). Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chemical Physics Letters, 288, 188–196.CrossRef Lifshitz, E., Dag, I., Litvin, I., Hodes, G., Gorer, S., Reisfeld, R., Zelner, M., & Minti, H. (1998). Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chemical Physics Letters, 288, 188–196.CrossRef
go back to reference Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88, 237901.CrossRef Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88, 237901.CrossRef
go back to reference Lloyd, L. D., Johnston, R. L., Salhi, S., & Wilson, N. T. (2004). Theoretical investigation of isomer stability in platinum-palladium nanoalloy clusters. Journal of Materials Chemistry, 14, 1691–1704.CrossRef Lloyd, L. D., Johnston, R. L., Salhi, S., & Wilson, N. T. (2004). Theoretical investigation of isomer stability in platinum-palladium nanoalloy clusters. Journal of Materials Chemistry, 14, 1691–1704.CrossRef
go back to reference Molayem, M., Grigoryan, V. G., & Springborg, M. (2011). Theoretical determination of the most stable structures of Ni m Ag n bimetallic nanoalloys. Journal of Physical Chemistry C, 115, 7179–7192.CrossRef Molayem, M., Grigoryan, V. G., & Springborg, M. (2011). Theoretical determination of the most stable structures of Ni m Ag n bimetallic nanoalloys. Journal of Physical Chemistry C, 115, 7179–7192.CrossRef
go back to reference Molayem, M., Grigoryan, V. G., & Springborg, M. (2011). Global minimum structures and magic clusters of Cu m Ag n nanoalloys. Journal of Physical Chemistry C, 115, 22148–22162.CrossRef Molayem, M., Grigoryan, V. G., & Springborg, M. (2011). Global minimum structures and magic clusters of Cu m Ag n nanoalloys. Journal of Physical Chemistry C, 115, 22148–22162.CrossRef
go back to reference Parks, E. K., Nieman, G. C., Kerns, K. P., & Riley, S. J. (1997). Reactions of Ni38 with N2, H2, and CO: Cluster structure and adsorbate binding sites. Journal of Chemical Physics, 107, 1861–1871.CrossRef Parks, E. K., Nieman, G. C., Kerns, K. P., & Riley, S. J. (1997). Reactions of Ni38 with N2, H2, and CO: Cluster structure and adsorbate binding sites. Journal of Chemical Physics, 107, 1861–1871.CrossRef
go back to reference Parks, E. K., Kerns, K. P., & Riley, S. J. (1998). The structure of Ni39. Journal of Chemical Physics, 109, 10207–10216.CrossRef Parks, E. K., Kerns, K. P., & Riley, S. J. (1998). The structure of Ni39. Journal of Chemical Physics, 109, 10207–10216.CrossRef
go back to reference Parks, E. K., Kerns, K. P., & Riley, S. J. (2001). The structure of Ni46, Ni47, and Ni48. Journal of Chemical Physics, 114, 2228–2236.CrossRef Parks, E. K., Kerns, K. P., & Riley, S. J. (2001). The structure of Ni46, Ni47, and Ni48. Journal of Chemical Physics, 114, 2228–2236.CrossRef
go back to reference Pittaway, F., Paz-Borbón, L. O., Johnston, R. L., Arslan, H., Ferrando, R., Mottet, C., Barcaro, G., & Fortunelli, A. (2009). Theoretical studies of palladiumgold nanoclusters: PdAu clusters with up to 50 atoms. Journal of Physical Chemistry C, 113, 9141–9152.CrossRef Pittaway, F., Paz-Borbón, L. O., Johnston, R. L., Arslan, H., Ferrando, R., Mottet, C., Barcaro, G., & Fortunelli, A. (2009). Theoretical studies of palladiumgold nanoclusters: PdAu clusters with up to 50 atoms. Journal of Physical Chemistry C, 113, 9141–9152.CrossRef
go back to reference Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G., & Kaschner, R. (1995). Construction of tight-binding-like potentials on the basis of density-functional theory. Physical Review B, 51, 12947–12957.CrossRef Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G., & Kaschner, R. (1995). Construction of tight-binding-like potentials on the basis of density-functional theory. Physical Review B, 51, 12947–12957.CrossRef
go back to reference Rohmer, M. M., Bénard, M., & Poblet, J. M. (2000). Structure, reactivity, and growth pathways of metallocarbohedrenes M8C12 and transition metal/carbon clusters and nanocrystals: A challenge to computational chemistry. Chemistry Reviews, 100, 495–541.CrossRef Rohmer, M. M., Bénard, M., & Poblet, J. M. (2000). Structure, reactivity, and growth pathways of metallocarbohedrenes M8C12 and transition metal/carbon clusters and nanocrystals: A challenge to computational chemistry. Chemistry Reviews, 100, 495–541.CrossRef
go back to reference Roy, S., & Springborg, M. (2003). A theoretical study of structural and electronic properties of naked stoichiometric and non-stoichiometric indium phosphide clusters. Journal of Physical Chemistry B, 107, 2771–2779.CrossRef Roy, S., & Springborg, M. (2003). A theoretical study of structural and electronic properties of naked stoichiometric and non-stoichiometric indium phosphide clusters. Journal of Physical Chemistry B, 107, 2771–2779.CrossRef
go back to reference Roy, S., & Springborg, M. (2005). Theoretical investigation of the influence of ligands on structural and electronic properties of indium phosphide clusters. Journal of Physical Chemistry A, 109, 1324–1329.CrossRef Roy, S., & Springborg, M. (2005). Theoretical investigation of the influence of ligands on structural and electronic properties of indium phosphide clusters. Journal of Physical Chemistry A, 109, 1324–1329.CrossRef
go back to reference Sarkar P., & Springborg, M. (2003). Density-functional study of size-dependent properties of Cd m Se n clusters. Physical Review B, 68, 235409.CrossRef Sarkar P., & Springborg, M. (2003). Density-functional study of size-dependent properties of Cd m Se n clusters. Physical Review B, 68, 235409.CrossRef
go back to reference Sarkar, P., Springborg, M., & Seifert, G. (2005). A theoretical study of the structural and electronic properties of Cd/Se and CdS/CdSe core/shell nanoparticles. Chemical Physics Letters, 405, 103–107.CrossRef Sarkar, P., Springborg, M., & Seifert, G. (2005). A theoretical study of the structural and electronic properties of Cd/Se and CdS/CdSe core/shell nanoparticles. Chemical Physics Letters, 405, 103–107.CrossRef
go back to reference Seifert, G., Porezag, D., & Frauenheim, Th. (1996). Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. International Journal of Quantum Chemistry, 58, 185–192.CrossRef Seifert, G., Porezag, D., & Frauenheim, Th. (1996). Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. International Journal of Quantum Chemistry, 58, 185–192.CrossRef
go back to reference Seifert, G., & Schmidt, R. (1992). Molecular dynamics and trajectory calculations: The application of an LCAO-LDA scheme for simulations of cluster-cluster collisions. New Journal of Chemistry, 16, 1145–1147. Seifert, G., & Schmidt, R. (1992). Molecular dynamics and trajectory calculations: The application of an LCAO-LDA scheme for simulations of cluster-cluster collisions. New Journal of Chemistry, 16, 1145–1147.
go back to reference Springborg, M. (1999). Electronic properties, stability, and length scales of Cs N clusters. Journal of Physics: Condensed Matter, 11, 1–18. Springborg, M. (1999). Electronic properties, stability, and length scales of Cs N clusters. Journal of Physics: Condensed Matter, 11, 1–18.
go back to reference Springborg, M. (2000). Methods of Electronic-Structure Calculations. Chichester: Wiley. Springborg, M. (2000). Methods of Electronic-Structure Calculations. Chichester: Wiley.
go back to reference Springborg, M. (2006). Determination of structure in electronic structure calculations. In Hinchliffe, A. (Ed.), Specialist periodical reports: Chemical modelling, applications and theory (Vol. 4, pp. 249–323). Cambridge, UK: Royal Society of Chemistry. Springborg, M. (2006). Determination of structure in electronic structure calculations. In Hinchliffe, A. (Ed.), Specialist periodical reports: Chemical modelling, applications and theory (Vol. 4, pp. 249–323). Cambridge, UK: Royal Society of Chemistry.
go back to reference Springborg, M. (2009). Nanostructures. In Springborg, M. (Ed.), Specialist periodical reports: Chemical modelling, applications and theory (Vol. 6, pp. 510–574). Cambridge, UK: Royal Society of Chemistry. Springborg, M. (2009). Nanostructures. In Springborg, M. (Ed.), Specialist periodical reports: Chemical modelling, applications and theory (Vol. 6, pp. 510–574). Cambridge, UK: Royal Society of Chemistry.
go back to reference Springborg, M., Satpathy, S., Malinowski, N., Zimmermann, U., & Martin, T. P. (1996). Electronic shell structure and relative abundances in alkali-coated C60. Physical Review Letters, 77, 1127–1130.CrossRef Springborg, M., Satpathy, S., Malinowski, N., Zimmermann, U., & Martin, T. P. (1996). Electronic shell structure and relative abundances in alkali-coated C60. Physical Review Letters, 77, 1127–1130.CrossRef
go back to reference Tevekeliyska, V., Dong, Y., Springborg, M., & Grigoryan, V. G. (2010). Using theory in determining the properties of metal cluaters: Sodium as a case study. In Chattaraj, P. K. (Ed.), Aromaticity and metal clusters (pp. 161–185). Boca Raton: Taylor & Francis. Tevekeliyska, V., Dong, Y., Springborg, M., & Grigoryan, V. G. (2010). Using theory in determining the properties of metal cluaters: Sodium as a case study. In Chattaraj, P. K. (Ed.), Aromaticity and metal clusters (pp. 161–185). Boca Raton: Taylor & Francis.
go back to reference Tsai, C. J., & Jordan, K. D. (1993). Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters. Journal of Physical Chemistry, 97, 11227–11237.CrossRef Tsai, C. J., & Jordan, K. D. (1993). Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters. Journal of Physical Chemistry, 97, 11227–11237.CrossRef
go back to reference ur Rehman, H., Springborg, M., & Dong, Y. (2011). Structural and electronic properties of Si n , Ge n , and Si n Ge n clusters. Journal of Physical Chemistry A, 115, 2005–2015. ur Rehman, H., Springborg, M., & Dong, Y. (2011). Structural and electronic properties of Si n , Ge n , and Si n Ge n clusters. Journal of Physical Chemistry A, 115, 2005–2015.
go back to reference van Heijnsbergen, D., von Helden, G., Duncan, M. A., van Roij, A. J. A., & Meijer, M. (1999). Vibrational spectroscopy of gas-phase metal-carbide clusters and nanocrystals. Physical Review Letters, 83, 4983–4986.CrossRef van Heijnsbergen, D., von Helden, G., Duncan, M. A., van Roij, A. J. A., & Meijer, M. (1999). Vibrational spectroscopy of gas-phase metal-carbide clusters and nanocrystals. Physical Review Letters, 83, 4983–4986.CrossRef
go back to reference Wales, D.J. (2003). Energy landscapes with applications to clusters, biomolecules and glasses. Cambridge, UK: Cambridge University Press. Wales, D.J. (2003). Energy landscapes with applications to clusters, biomolecules and glasses. Cambridge, UK: Cambridge University Press.
go back to reference Wales, D. J., & Doye, J. P. K. (1997). Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101, 5111–5116.CrossRef Wales, D. J., & Doye, J. P. K. (1997). Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101, 5111–5116.CrossRef
go back to reference Weller, H., & Eychmüller, A. (1996). Preparation and characterization of semiconductor nanoparticles. In Kamat, P. V., & Meisel, D. (Eds.), Semiconductor nanoclusters (pp. 5–22). Amsterdam: Elsevier. Weller, H., & Eychmüller, A. (1996). Preparation and characterization of semiconductor nanoparticles. In Kamat, P. V., & Meisel, D. (Eds.), Semiconductor nanoclusters (pp. 5–22). Amsterdam: Elsevier.
go back to reference Wille, L. T., & Vennik, J. (1985). Computational complexity of the ground-state determination of atomic clusters. Journal of Physics A, 18, L419–L422.CrossRef Wille, L. T., & Vennik, J. (1985). Computational complexity of the ground-state determination of atomic clusters. Journal of Physics A, 18, L419–L422.CrossRef
go back to reference Yeh, C.-Y., Lu, Z. W., Froyen, S., & Zunger, A. (1992). Predictions and systematization of the zinc-blende–wurtzite structural energies in binary octet compounds. Physical Review B, 45, 12130–12133.CrossRef Yeh, C.-Y., Lu, Z. W., Froyen, S., & Zunger, A. (1992). Predictions and systematization of the zinc-blende–wurtzite structural energies in binary octet compounds. Physical Review B, 45, 12130–12133.CrossRef
go back to reference Yeh, C.-Y., Lu, Z. W., Froyen, S., & Zunger, A. (1992). Zinc-blende–wurtzite polytypism in semiconductors. Physical Review B, 46, 10086–10097.CrossRef Yeh, C.-Y., Lu, Z. W., Froyen, S., & Zunger, A. (1992). Zinc-blende–wurtzite polytypism in semiconductors. Physical Review B, 46, 10086–10097.CrossRef
Metadata
Title
Theoretical Studies of Structural and Electronic Properties of Clusters
Author
Michael Springborg
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-27282-5_26

Premium Partner