Skip to main content
Top
Published in: Meccanica 9/2017

14-11-2016

Thermal and tensile loading effects on size-dependent vibration response of traveling nanobeam by wavelet-based spectral element modeling

Authors: Ali Mokhtari, Vahid Sarvestan, Hamid Reza Mirdamadi

Published in: Meccanica | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a novel approach for size-dependent vibration response of a nanostructure under tensile and thermal loads, traveling in its axial direction at a constant velocity. The traveling nanostructure is modeled as an Euler–Bernoulli nanobeam based on modified couple stress theory. Wavelet-based spectral element model (WSEM) is performed for analyzing vibration of the system. Imposing WSEM reduces the governing partial differential equation of the system to a set of ordinary differential equations. The roles of nanobeam velocity, tensile and thermal loads on vibration and wave characteristics, and divergence/flutter instability are scrutinized by WSEM. The validity and accuracy of resulting responses are inspected by comparing with numeric values obtained from spectral element and finite element methods, and whenever possible, with those available in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hwang SJ, Perkins NC (1992) Super-critical stability of an axially moving beam. J Sound Vib 154(3):381–409ADSCrossRefMATH Hwang SJ, Perkins NC (1992) Super-critical stability of an axially moving beam. J Sound Vib 154(3):381–409ADSCrossRefMATH
2.
go back to reference AI-Jawi AAN, Pierre C, Ulsoy AG (1995) Vibration localization in dual-span axially moving beams, part I: formulation and results. J Sound Vib 179(2):243–266ADSCrossRef AI-Jawi AAN, Pierre C, Ulsoy AG (1995) Vibration localization in dual-span axially moving beams, part I: formulation and results. J Sound Vib 179(2):243–266ADSCrossRef
3.
go back to reference Pellicano F, Vestroni F (2001) Non linear dynamics and bifurcations of an axially moving beam. J Vib Acoust 22:21–30 Pellicano F, Vestroni F (2001) Non linear dynamics and bifurcations of an axially moving beam. J Vib Acoust 22:21–30
4.
go back to reference Lee HP (1993) Dynamics of a beam moving over multiple supports. Int J Solids Struct 30(2):199–209CrossRef Lee HP (1993) Dynamics of a beam moving over multiple supports. Int J Solids Struct 30(2):199–209CrossRef
5.
go back to reference Stylianou M, Tabarrok B (1994) Finite element analysis of an axially moving beam, part I: time integration. J Sound Vib 178(4):433–453ADSCrossRef Stylianou M, Tabarrok B (1994) Finite element analysis of an axially moving beam, part I: time integration. J Sound Vib 178(4):433–453ADSCrossRef
6.
go back to reference Wickert JA, Mote CD (1990) Classical vibration analysis of axially moving continua. J Appl Mech 57:738–744CrossRefMATH Wickert JA, Mote CD (1990) Classical vibration analysis of axially moving continua. J Appl Mech 57:738–744CrossRefMATH
7.
go back to reference Riedel CH, Tan CA (1998) Dynamic characteristics and mode localization of elastically constrained axially moving strings and beams. J Sound Vib 215(3):455–473ADSCrossRefMATH Riedel CH, Tan CA (1998) Dynamic characteristics and mode localization of elastically constrained axially moving strings and beams. J Sound Vib 215(3):455–473ADSCrossRefMATH
8.
go back to reference Oz HR (2001) On the vibrations of an axially traveling beam on fixed supports with variable velocity. J Sound Vib 239(3):556–564ADSMathSciNetCrossRef Oz HR (2001) On the vibrations of an axially traveling beam on fixed supports with variable velocity. J Sound Vib 239(3):556–564ADSMathSciNetCrossRef
9.
go back to reference Chonan S (1986) Steady state response of an axially moving strip subjected to a stationary lateral load. J Sound Vib 107(1):155–165ADSCrossRef Chonan S (1986) Steady state response of an axially moving strip subjected to a stationary lateral load. J Sound Vib 107(1):155–165ADSCrossRef
10.
go back to reference Yang T, Fang B, Yang XD, Li Y (2013) Closed-form approximate solution for natural frequency of axially moving beams. Int J Mech Sci 74:154–160CrossRef Yang T, Fang B, Yang XD, Li Y (2013) Closed-form approximate solution for natural frequency of axially moving beams. Int J Mech Sci 74:154–160CrossRef
11.
go back to reference Oh H, Lee U, Park D (2004) Dynamics of an axially moving Euler–Bernoulli beam: spectral element modeling and analysis. KSME Int J 18(3):395–406CrossRef Oh H, Lee U, Park D (2004) Dynamics of an axially moving Euler–Bernoulli beam: spectral element modeling and analysis. KSME Int J 18(3):395–406CrossRef
12.
go back to reference Sarvestan V, Mirdamadi HR, Ghayour M, Mokhtari A (2015) Spectral finite element for vibration analysis of cracked viscoelastic Euler–Bernoulli beam subjected to moving load. Acta Mech 226(12):4259–4280MathSciNetCrossRefMATH Sarvestan V, Mirdamadi HR, Ghayour M, Mokhtari A (2015) Spectral finite element for vibration analysis of cracked viscoelastic Euler–Bernoulli beam subjected to moving load. Acta Mech 226(12):4259–4280MathSciNetCrossRefMATH
13.
go back to reference Mokhtari A, Sarvestan V, Mirdamadi HR (2016) Spectrally formulated finite element for vibration analysis of an Euler–Bernoulli beam on Pasternak foundation. J Theor Appl Vib Acoust 2(2):119–132 Mokhtari A, Sarvestan V, Mirdamadi HR (2016) Spectrally formulated finite element for vibration analysis of an Euler–Bernoulli beam on Pasternak foundation. J Theor Appl Vib Acoust 2(2):119–132
14.
go back to reference Mitra M, Gopalakrishnan S (2005) Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. Int J Solids Struct 42:4695–4721CrossRefMATH Mitra M, Gopalakrishnan S (2005) Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. Int J Solids Struct 42:4695–4721CrossRefMATH
15.
go back to reference Mitra M, Gopalakrishnan S (2006) Extraction of wave characteristics from wavelet-based spectral finite element formulation. Mech Syst Signal Process 20:2046–2079ADSCrossRef Mitra M, Gopalakrishnan S (2006) Extraction of wave characteristics from wavelet-based spectral finite element formulation. Mech Syst Signal Process 20:2046–2079ADSCrossRef
16.
go back to reference Mitra M, Gopalakrishnan S (2006) Wavelet-based spectral finite element for analysis of coupled wave propagation in higher order composite beams. Compos Struct 73:263–277CrossRef Mitra M, Gopalakrishnan S (2006) Wavelet-based spectral finite element for analysis of coupled wave propagation in higher order composite beams. Compos Struct 73:263–277CrossRef
17.
go back to reference Yang TZ, Fang B, Chen Y, Zhen YX (2009) Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations. Int J Non-Linear Mech 44:230–238CrossRef Yang TZ, Fang B, Chen Y, Zhen YX (2009) Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations. Int J Non-Linear Mech 44:230–238CrossRef
18.
19.
go back to reference Lim CW, Li C, Yu JL (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331(12):2798–2808ADSCrossRef Lim CW, Li C, Yu JL (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331(12):2798–2808ADSCrossRef
20.
go back to reference Li C (2013) Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory. Struct Eng Mech 48(3):415–434CrossRef Li C (2013) Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory. Struct Eng Mech 48(3):415–434CrossRef
21.
go back to reference Yang TZ, Ji S, Yang XD, Fang B (2014) Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci 76:47–55CrossRef Yang TZ, Ji S, Yang XD, Fang B (2014) Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci 76:47–55CrossRef
22.
go back to reference Sui S, Chen L, Li C, Liu X (2015) Transverse vibration of axially moving functionally graded materials based on Timoshenko beam theory. Math Probl Eng 2015:9. Article ID 391452 Sui S, Chen L, Li C, Liu X (2015) Transverse vibration of axially moving functionally graded materials based on Timoshenko beam theory. Math Probl Eng 2015:9. Article ID 391452
23.
go back to reference Liu JJ, Li C, Yang CJ, Shen JP, Xie F (2016) Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory. J Vib Control. doi:10.1177/1077546316629013 Liu JJ, Li C, Yang CJ, Shen JP, Xie F (2016) Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory. J Vib Control. doi:10.​1177/​1077546316629013​
24.
go back to reference Mokhtari A, Mirdamadi HR, Ghayour M, Sarvestan V (2016) Time/wave domain analysis for axially moving pre-stressed nanobeam by wavelet-based spectral element method. Int J Mech Sci 105:58–69CrossRef Mokhtari A, Mirdamadi HR, Ghayour M, Sarvestan V (2016) Time/wave domain analysis for axially moving pre-stressed nanobeam by wavelet-based spectral element method. Int J Mech Sci 105:58–69CrossRef
25.
26.
go back to reference Zhang YQ, Liu X, Zhao JH (2008) Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys Lett A 372:1676–1681ADSCrossRefMATH Zhang YQ, Liu X, Zhao JH (2008) Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys Lett A 372:1676–1681ADSCrossRefMATH
27.
go back to reference Zhen YX, Fang B, Tang Y (2011) Thermal–mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium. Phys E 44:379–385CrossRef Zhen YX, Fang B, Tang Y (2011) Thermal–mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium. Phys E 44:379–385CrossRef
28.
go back to reference Pradhan SC, Mandal U (2013) Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect. Phys E 53:223–232CrossRef Pradhan SC, Mandal U (2013) Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect. Phys E 53:223–232CrossRef
29.
go back to reference Gopalakrishnan S, Mitra M (2010) Wavelet methods for dynamical problems, 1st edn. Taylor & Francis Group, Boca RatonCrossRef Gopalakrishnan S, Mitra M (2010) Wavelet methods for dynamical problems, 1st edn. Taylor & Francis Group, Boca RatonCrossRef
30.
go back to reference Amaratunga K, Williams JR (1995) Time integration using wavelets. Proc SPIE Wavelet Appl Dual Use 2491:894–902ADS Amaratunga K, Williams JR (1995) Time integration using wavelets. Proc SPIE Wavelet Appl Dual Use 2491:894–902ADS
32.
go back to reference Williams JR, Amaratunga K (1997) A discrete wavelet transform without edge effects using wavelet extrapolation. J Fourier Anal Appl 3(4):435–449MathSciNetCrossRefMATH Williams JR, Amaratunga K (1997) A discrete wavelet transform without edge effects using wavelet extrapolation. J Fourier Anal Appl 3(4):435–449MathSciNetCrossRefMATH
33.
go back to reference Amaratunga K, Williams JR (1997) Wavelet-Galerkin solution of boundary value problems. Arch Comput Methods Eng 4(3):243–285MathSciNetCrossRef Amaratunga K, Williams JR (1997) Wavelet-Galerkin solution of boundary value problems. Arch Comput Methods Eng 4(3):243–285MathSciNetCrossRef
34.
go back to reference Jiang H, Liu B, Huang Y (2004) Thermal expansion of single wall carbon nanotubes. J Eng Mater Technol 126:265–270CrossRef Jiang H, Liu B, Huang Y (2004) Thermal expansion of single wall carbon nanotubes. J Eng Mater Technol 126:265–270CrossRef
35.
go back to reference Yao XH, Han Q (2006) Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change. J Eng Mater Technol 128:419–427CrossRef Yao XH, Han Q (2006) Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change. J Eng Mater Technol 128:419–427CrossRef
36.
go back to reference Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743CrossRefMATH Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743CrossRefMATH
37.
go back to reference Kong SL, Zhou SJ, Nie ZF, Wang K (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46:427–437CrossRefMATH Kong SL, Zhou SJ, Nie ZF, Wang K (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46:427–437CrossRefMATH
38.
go back to reference Miandoaba EM, Pishkenarib HN, Yousefi-Komaa A, Hoorzadc H (2014) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys E 63:223–228CrossRef Miandoaba EM, Pishkenarib HN, Yousefi-Komaa A, Hoorzadc H (2014) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys E 63:223–228CrossRef
Metadata
Title
Thermal and tensile loading effects on size-dependent vibration response of traveling nanobeam by wavelet-based spectral element modeling
Authors
Ali Mokhtari
Vahid Sarvestan
Hamid Reza Mirdamadi
Publication date
14-11-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0578-9

Other articles of this Issue 9/2017

Meccanica 9/2017 Go to the issue

Premium Partners