Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

07-09-2021 | Research Article-Computer Engineering and Computer Science

Thermal Comfort Model for HVAC Buildings Using Machine Learning

Authors: Muhammad Fayyaz, Asma Ahmad Farhan, Abdul Rehman Javed

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal comfort is a condition of mind that expresses satisfaction with the thermal environment. Thermal comfort is critical for both health and productivity. Inadequate thermal comfort results in stress for building inhabitants. Improved thermal conditions are directly related to improved health and productivity of individuals. This paper proposes a novel human thermal comfort model using machine learning algorithms that identify the key features and predict thermal sensation with higher accuracy. We evaluate our approach using tenfold cross-validation and compare our results with state-of-the-art Fanger’s model. Our approach achieves a higher accuracy of 86.08%. Our results demonstrate the potential of our approach to predict thermal sensation votes under wide-ranging thermal conditions correctly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kuchen, E.; Fisch, M.N.: Spot monitoring: thermal comfort evaluation in 25 office buildings in winter. Build. Environ. 44(4), 839–847 (2009)CrossRef Kuchen, E.; Fisch, M.N.: Spot monitoring: thermal comfort evaluation in 25 office buildings in winter. Build. Environ. 44(4), 839–847 (2009)CrossRef
2.
go back to reference Degroot, D.W.K.W.: Impaired defense of core temperature in aged humans during mild cold stress. Integr. Comp. Physiol. 292(1), R103–R108 (2007)CrossRef Degroot, D.W.K.W.: Impaired defense of core temperature in aged humans during mild cold stress. Integr. Comp. Physiol. 292(1), R103–R108 (2007)CrossRef
3.
go back to reference Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L.: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335(2), 84–90 (1996)CrossRef Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L.: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335(2), 84–90 (1996)CrossRef
4.
go back to reference Farhan, A.A.; Pattipatim K,; Wang, B.; Luh, P.: Predicting individual thermal comfort using machine learning algorithms. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 708–713. IEEE (2015) Farhan, A.A.; Pattipatim K,; Wang, B.; Luh, P.: Predicting individual thermal comfort using machine learning algorithms. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 708–713. IEEE (2015)
5.
go back to reference Luo, M.; Wang, Z.; Ke, K.; Cao, B.; Zhai, Y.; Zhou, X.: Human metabolic rate and thermal comfort in buildings: the problem and challenge. Build. Environ. 131, 44–52 (2018)CrossRef Luo, M.; Wang, Z.; Ke, K.; Cao, B.; Zhai, Y.; Zhou, X.: Human metabolic rate and thermal comfort in buildings: the problem and challenge. Build. Environ. 131, 44–52 (2018)CrossRef
6.
go back to reference de Dear, R.; Brager, G.: Thermal comfort in naturally ventilated buildings: revisions to Ashrae standard 55. Energy Build. 34(6), 549–561 (2002)CrossRef de Dear, R.; Brager, G.: Thermal comfort in naturally ventilated buildings: revisions to Ashrae standard 55. Energy Build. 34(6), 549–561 (2002)CrossRef
7.
go back to reference Kim, J.; Schiavon, S.; Brager, G.: Personal comfort models—a new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 132, 114–124 (2018)CrossRef Kim, J.; Schiavon, S.; Brager, G.: Personal comfort models—a new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 132, 114–124 (2018)CrossRef
8.
go back to reference Auffenberg, F., Stein, S.; Alex, R.: A personalised thermal comfort model using a Bayesian network. In: IJCAI (2015) Auffenberg, F., Stein, S.; Alex, R.: A personalised thermal comfort model using a Bayesian network. In: IJCAI (2015)
9.
go back to reference Fanger, P.O.: Thermal comfort: analysis and applications in environmental engineering. R. Soc. Health J. 92(3), 164 (1972) Fanger, P.O.: Thermal comfort: analysis and applications in environmental engineering. R. Soc. Health J. 92(3), 164 (1972)
10.
go back to reference Morresi, N.; Casaccia, S.; Sorcinelli, M.; Arnesano, M.; Uriarte, A.; Torrens-Galdiz, J.I.; Revel, G.M.: Sensing physiological and environmental quantities to measure human thermal comfort through machine learning techniques. IEEE Sens. J. 21(10), 12322–12337 (2021)CrossRef Morresi, N.; Casaccia, S.; Sorcinelli, M.; Arnesano, M.; Uriarte, A.; Torrens-Galdiz, J.I.; Revel, G.M.: Sensing physiological and environmental quantities to measure human thermal comfort through machine learning techniques. IEEE Sens. J. 21(10), 12322–12337 (2021)CrossRef
11.
go back to reference Lee, Y.; Lee, H.; Kang, B.H.; Kim, J.K.: Machine learning-based personal thermal comfort model for electric vehicles with local infrared radiant warmers. J. Mech. Sci. Technol. 35, 3239–3247 (2021)CrossRef Lee, Y.; Lee, H.; Kang, B.H.; Kim, J.K.: Machine learning-based personal thermal comfort model for electric vehicles with local infrared radiant warmers. J. Mech. Sci. Technol. 35, 3239–3247 (2021)CrossRef
12.
go back to reference Somu, N.; Sriram, A.; Kowli, A.; Ramamritham, K.: A hybrid deep transfer learning strategy for thermal comfort prediction in buildings. Build. Environ. 203, 108133 (2021)CrossRef Somu, N.; Sriram, A.; Kowli, A.; Ramamritham, K.: A hybrid deep transfer learning strategy for thermal comfort prediction in buildings. Build. Environ. 203, 108133 (2021)CrossRef
13.
go back to reference Abdulgader, M.; Lashhab, F.: Energy-efficient thermal comfort control in smart buildings. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0022–0026. IEEE (2021) Abdulgader, M.; Lashhab, F.: Energy-efficient thermal comfort control in smart buildings. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0022–0026. IEEE (2021)
14.
go back to reference Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.: The weka data mining software. ACM SIGKDD Explor. Newsl. 11(1), 10 (2009)CrossRef Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.: The weka data mining software. ACM SIGKDD Explor. Newsl. 11(1), 10 (2009)CrossRef
15.
go back to reference von Grabe, J.: Potential of artificial neural networks to predict thermal sensation votes. Appl. Energy 161, 412–424 (2016)CrossRef von Grabe, J.: Potential of artificial neural networks to predict thermal sensation votes. Appl. Energy 161, 412–424 (2016)CrossRef
16.
go back to reference Auffenberg, F.; Snow, S.; Stein, S.; Rogers, A.: A comfort-based approach to smart heating and air conditioning. ACM Trans. Intell. Syst. Technol. 9(3), 1–20 (2017)CrossRef Auffenberg, F.; Snow, S.; Stein, S.; Rogers, A.: A comfort-based approach to smart heating and air conditioning. ACM Trans. Intell. Syst. Technol. 9(3), 1–20 (2017)CrossRef
17.
go back to reference Yoon, H.; Lee, H.C.D.; Jo, J.: Prediction of thermal environment in a large space using artificial neural network. Energies 11(2), 418 (2018)CrossRef Yoon, H.; Lee, H.C.D.; Jo, J.: Prediction of thermal environment in a large space using artificial neural network. Energies 11(2), 418 (2018)CrossRef
18.
go back to reference Vellei, M.; Herrera, D.F.M.; Natarajan, S.: The influence of relative humidity on adaptive thermal comfort. Build. Environ. 124, 171–185 (2017)CrossRef Vellei, M.; Herrera, D.F.M.; Natarajan, S.: The influence of relative humidity on adaptive thermal comfort. Build. Environ. 124, 171–185 (2017)CrossRef
19.
go back to reference Lu, S.; Wang, C.L.W.; Hameen, E.: Data-driven simulation of a thermal comfort-based temperature set-point control with ashrae rp884. Build. Environ. 156, 137–146 (2019)CrossRef Lu, S.; Wang, C.L.W.; Hameen, E.: Data-driven simulation of a thermal comfort-based temperature set-point control with ashrae rp884. Build. Environ. 156, 137–146 (2019)CrossRef
20.
go back to reference Li, D.; Menassa, C.C.; Kamat, V.R.: Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 126, 304–317 (2017)CrossRef Li, D.; Menassa, C.C.; Kamat, V.R.: Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 126, 304–317 (2017)CrossRef
21.
go back to reference Lee, S.; Bilionis, P.K.I.; Tzempelikos, A.: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Build. Environ. 118, 323–343 (2017)CrossRef Lee, S.; Bilionis, P.K.I.; Tzempelikos, A.: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Build. Environ. 118, 323–343 (2017)CrossRef
22.
go back to reference Jazizadeh, F.; Ghahramani, A.; Becerik-Gerber, B.; Kichkaylo, T.; Orosz, M.: User-LED decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy Build. 70, 398–410 (2014)CrossRef Jazizadeh, F.; Ghahramani, A.; Becerik-Gerber, B.; Kichkaylo, T.; Orosz, M.: User-LED decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy Build. 70, 398–410 (2014)CrossRef
23.
go back to reference de Dear, R.; Brager, G.S.: The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 45(2), 100–108 (2001)CrossRef de Dear, R.; Brager, G.S.: The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 45(2), 100–108 (2001)CrossRef
24.
go back to reference Peng, H.; Long, F.; Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef Peng, H.; Long, F.; Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef
25.
go back to reference Chen, Y.; Chen, M.: Using chi-square statistics to measure similarities for text categorization. Expert Syst. Appl. 38(4), 3085–3090 (2011)CrossRef Chen, Y.; Chen, M.: Using chi-square statistics to measure similarities for text categorization. Expert Syst. Appl. 38(4), 3085–3090 (2011)CrossRef
26.
go back to reference Bennasar, M.; Hicks, R.S.Y.: Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015)CrossRef Bennasar, M.; Hicks, R.S.Y.: Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015)CrossRef
27.
go back to reference Wold, S.; Esbensen, K.; Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)CrossRef Wold, S.; Esbensen, K.; Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)CrossRef
28.
go back to reference He, H.; Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef He, H.; Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef
29.
go back to reference Platt, J.C.; Nitschke, R.: Sequential minimal optimization: a fast algorithm for training support vector machines. In: Advances in Kernel Methods-Support Vector Learning 208 (1998) Platt, J.C.; Nitschke, R.: Sequential minimal optimization: a fast algorithm for training support vector machines. In: Advances in Kernel Methods-Support Vector Learning 208 (1998)
30.
go back to reference Watson, T.J.: An empirical study of the naive bayes classifier (2011) Watson, T.J.: An empirical study of the naive bayes classifier (2011)
31.
go back to reference Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15 (2000) Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15 (2000)
32.
go back to reference Aftab, M.; Chen, C.; Chau, C.K.; Rahwan, T.: Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 154, 141–156 (2017)CrossRef Aftab, M.; Chen, C.; Chau, C.K.; Rahwan, T.: Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 154, 141–156 (2017)CrossRef
33.
go back to reference Rehman, S.U.; Javed, A.R.; Khan, M.U.; Awan, M.N.; Farukh, A.; Hussien, A.: Personalisedcomfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents. Enterprise Inf. Syst. 1–23 (2020) Rehman, S.U.; Javed, A.R.; Khan, M.U.; Awan, M.N.; Farukh, A.; Hussien, A.: Personalisedcomfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents. Enterprise Inf. Syst. 1–23 (2020)
Metadata
Title
Thermal Comfort Model for HVAC Buildings Using Machine Learning
Authors
Muhammad Fayyaz
Asma Ahmad Farhan
Abdul Rehman Javed
Publication date
07-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06156-8

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

Large-Scale Data Clustering Using Manifold-Regularized Ensemble of Posterior in GAN

Research Article-Computer Engineering and Computer Science

Bipolar Mating Tendency: Harmony Between the Best and the Worst Individuals

Research Article-Computer Engineering and Computer Science

Research on Behavior of Two New Random Entity Mobility Models in 3-D Space

Research Article-Computer Engineering and Computer Science

A Novel Approach to Printed Arabic Optical Character Recognition

Premium Partners