Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Thermal Degradation of Polymer Blends, Composites and Nanocomposites

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter deals with a brief account of thermal degradation of polymer-based blends, composites and nanocomposites. Different synthesising, preparation and characterisation methods of thermal degradation of polymer-based blends, composites and nanocomposites are discussed. Finally the applications, new challenges and opportunities for these thermal degradation of polymer-based blends, composites and nanocomposites are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent developments in polymer recycling, pp. 122–129. Transworld Research Network, Kerala (2011) Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent developments in polymer recycling, pp. 122–129. Transworld Research Network, Kerala (2011)
2.
go back to reference Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998) Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998)
3.
go back to reference Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mat. Sci. Eng. A. 527, 917–926 (2010)CrossRef Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mat. Sci. Eng. A. 527, 917–926 (2010)CrossRef
4.
go back to reference Honmute, S., Ganachari, S.V., Bhat, R., Naveen Kumar, H.M.P., Huh, D.S., Venkatarman, A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012) Honmute, S., Ganachari, S.V., Bhat, R., Naveen Kumar, H.M.P., Huh, D.S., Venkatarman, A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012)
5.
go back to reference Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)CrossRef Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)CrossRef
6.
go back to reference Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)CrossRef Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)CrossRef
7.
go back to reference Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polym. 54, 6589–6598 (2013)CrossRef Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polym. 54, 6589–6598 (2013)CrossRef
8.
go back to reference Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)CrossRef Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)CrossRef
9.
go back to reference Pandey, J.K., Reddy, K.R., Kumar, A.P., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 88, 234 (2005)CrossRef Pandey, J.K., Reddy, K.R., Kumar, A.P., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 88, 234 (2005)CrossRef
10.
go back to reference Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013) Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013)
11.
go back to reference Carrasco, F., Pagès, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000 (2008)CrossRef Carrasco, F., Pagès, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000 (2008)CrossRef
12.
go back to reference Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008) Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008)
13.
go back to reference Saitoh, K., Ohashi, K., Oyama, T., Takahashi, A., Kadota, J., Hirano, H.: Development of high-performance epoxy/clay nanocomposites by incorporating novel phosphonium modified montmorillonite. J. Appl. Polym. Sci. 122, 666 (2011) Saitoh, K., Ohashi, K., Oyama, T., Takahashi, A., Kadota, J., Hirano, H.: Development of high-performance epoxy/clay nanocomposites by incorporating novel phosphonium modified montmorillonite. J. Appl. Polym. Sci. 122, 666 (2011)
14.
go back to reference Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011) Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)
15.
go back to reference Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010) Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010)
16.
go back to reference Segev, O., Kushmaro, A., Brenner, A.: Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478–491 (2009)CrossRef Segev, O., Kushmaro, A., Brenner, A.: Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478–491 (2009)CrossRef
17.
go back to reference Murphy, J.: Modifying specific properties: flammability-flame retardants. In: Additives for Plastics, Handbooks, pp. 115–140. Elsevier Science Ltd., New York (2001) Murphy, J.: Modifying specific properties: flammability-flame retardants. In: Additives for Plastics, Handbooks, pp. 115–140. Elsevier Science Ltd., New York (2001)
18.
go back to reference Kumara, A.P., Depana, D., Tomerb, N.S., Singha, R.P.: Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRef Kumara, A.P., Depana, D., Tomerb, N.S., Singha, R.P.: Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRef
19.
go back to reference Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, Ph: New prospects in flameretardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R. 63(3), 100–125 (2009)CrossRef Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, Ph: New prospects in flameretardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R. 63(3), 100–125 (2009)CrossRef
20.
go back to reference Zhang, J., Ji, Q., Zhang, P., Xia, Y., Kong, Q.: Thermal stability and flame-retardancy mechanism of poly(ethyleneterephthalate)/boehmitena nocomposites. Polym. Degrad. Stab. 95, 1211–1218 (2010)CrossRef Zhang, J., Ji, Q., Zhang, P., Xia, Y., Kong, Q.: Thermal stability and flame-retardancy mechanism of poly(ethyleneterephthalate)/boehmitena nocomposites. Polym. Degrad. Stab. 95, 1211–1218 (2010)CrossRef
21.
go back to reference Ke, Y.C., Wu, T.B., Xia, Y.F.: The nucleation, crystallization and dispersion behavior of PET with monodisperse SiO2 composites. Polymer 11, 3324–3336 (2007)CrossRef Ke, Y.C., Wu, T.B., Xia, Y.F.: The nucleation, crystallization and dispersion behavior of PET with monodisperse SiO2 composites. Polymer 11, 3324–3336 (2007)CrossRef
22.
go back to reference Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V., et al.: Hydroxide and oxide ultra fine powders—effective retardant additives in polymers. In: Abstract 10th Branch Meeting Problems and development prospects of the Tomsk Petrochemical Complex, Tomsk, Russia, p. 37 (1996) (In Russian) Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V., et al.: Hydroxide and oxide ultra fine powders—effective retardant additives in polymers. In: Abstract 10th Branch Meeting Problems and development prospects of the Tomsk Petrochemical Complex, Tomsk, Russia, p. 37 (1996) (In Russian)
23.
go back to reference Gromov, A.A., Nazarenko, O.B., Tikhonov, D.V., Iljin, A.P., Pautova, Y.I.: Electroex plosive Nanometals. In: Gromov, A., Teipel, U. (eds.) Metal Nanopowders Production, Characterization, and Energetic Applications, pp. 67–78. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014)CrossRef Gromov, A.A., Nazarenko, O.B., Tikhonov, D.V., Iljin, A.P., Pautova, Y.I.: Electroex plosive Nanometals. In: Gromov, A., Teipel, U. (eds.) Metal Nanopowders Production, Characterization, and Energetic Applications, pp. 67–78. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014)CrossRef
24.
go back to reference Kwon, Y.-S., Kim, J.-C., Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V.: Electroexplosive technology of nano powders production: current status and future prospect. J. Korean Powder Metall. Inst. 19(1), 40–48 (2012)CrossRef Kwon, Y.-S., Kim, J.-C., Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V.: Electroexplosive technology of nano powders production: current status and future prospect. J. Korean Powder Metall. Inst. 19(1), 40–48 (2012)CrossRef
25.
go back to reference Nazarenko, O.B., Amelkovich, Y.A., Ilyin, A.P., Sechin, A.I.: Prospects of using nanopowders as flame retardant additives. Adv. Mater. Res. 872, 123–127 (2014)CrossRef Nazarenko, O.B., Amelkovich, Y.A., Ilyin, A.P., Sechin, A.I.: Prospects of using nanopowders as flame retardant additives. Adv. Mater. Res. 872, 123–127 (2014)CrossRef
26.
go back to reference Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRef Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRef
27.
go back to reference La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)CrossRef La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)CrossRef
28.
go back to reference Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)CrossRef Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)CrossRef
29.
go back to reference Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)CrossRef Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)CrossRef
30.
go back to reference Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef
31.
go back to reference Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civil. Eng. Res. 5, 285–288 (2014) Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civil. Eng. Res. 5, 285–288 (2014)
32.
go back to reference Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)CrossRef Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)CrossRef
33.
go back to reference Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renewable Energy 34, 2117–2123 (2009)CrossRef Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renewable Energy 34, 2117–2123 (2009)CrossRef
34.
go back to reference Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523, 1–24 (2011) Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523, 1–24 (2011)
35.
go back to reference Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)CrossRef Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)CrossRef
36.
go back to reference Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)CrossRef Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)CrossRef
37.
go back to reference Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)CrossRef Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)CrossRef
38.
go back to reference Bian, L., Xiao, J., Zeng, J., Xing, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylenebenzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 54, 230–235 (2014) Bian, L., Xiao, J., Zeng, J., Xing, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylenebenzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 54, 230–235 (2014)
39.
go back to reference Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRef Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRef
40.
go back to reference Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRef Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRef
41.
go back to reference Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Carson Meredith, J.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589−6598 (2013) Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Carson Meredith, J.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589−6598 (2013)
42.
go back to reference Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187−200 (1958) Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187−200 (1958)
43.
go back to reference Sylvestre, E.A., Lawton, W.H., Maggio, M.S.: Curve resolution using a postulated chemical reaction. Technometrics 16(3), 353−368 (1974) Sylvestre, E.A., Lawton, W.H., Maggio, M.S.: Curve resolution using a postulated chemical reaction. Technometrics 16(3), 353−368 (1974)
44.
go back to reference Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (2002) Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (2002)
45.
go back to reference Sanchez, F.C., Toft, J., van den Bogaert, B. and Massart, D.L.: Orthogonal projection approach applied to peak purity assessment. Anal. Chem. Chem. 68, 79 (1996) Sanchez, F.C., Toft, J., van den Bogaert, B. and Massart, D.L.: Orthogonal projection approach applied to peak purity assessment. Anal. Chem. Chem. 68, 79 (1996)
46.
go back to reference Chapiro, A.: Radiation Chemistry of Polymer Materials. Wiley Interscience Publishers, New York (1962) Chapiro, A.: Radiation Chemistry of Polymer Materials. Wiley Interscience Publishers, New York (1962)
47.
go back to reference Clough, R.L.: Radiation-resistant polymers. In: Encyclopedia of Polymer Science and Engineering, 2nd edn. pp. 667–708. Wiley, New York (1988) Clough, R.L.: Radiation-resistant polymers. In: Encyclopedia of Polymer Science and Engineering, 2nd edn. pp. 667–708. Wiley, New York (1988)
48.
go back to reference Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371–401 (2000)CrossRef Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371–401 (2000)CrossRef
49.
go back to reference Clegg, D.W., Collyer, A.A. (eds.): Irradiation Effects on Polymers. Elsevier Applied Science, London (1999) Clegg, D.W., Collyer, A.A. (eds.): Irradiation Effects on Polymers. Elsevier Applied Science, London (1999)
50.
go back to reference Woods, R.J.: Applied Radiation Chemistry: Radiation Processing. Wiley Interscience Publishers, New York (1994) Woods, R.J.: Applied Radiation Chemistry: Radiation Processing. Wiley Interscience Publishers, New York (1994)
51.
go back to reference Clough, R. L.: High-energy radiation and polymers. A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B. 185, pp. 8–33 (2001) Clough, R. L.: High-energy radiation and polymers. A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B. 185, pp. 8–33 (2001)
52.
go back to reference Spinks, J.W.T., Woods, R.J. (eds.): Introduction to Radiation Chemistry, 3rd edn. Wiley, New York (1990) Spinks, J.W.T., Woods, R.J. (eds.): Introduction to Radiation Chemistry, 3rd edn. Wiley, New York (1990)
53.
go back to reference Dawes, K., Glover, L.C., Vroom, D.A.: The effects of electron beam and γ-irradiation on polymer materials. In: Mark, J.E. (ed.) Physical Properties of Polymer. Handbook, 2nd edn. Springer, New York (2007) Dawes, K., Glover, L.C., Vroom, D.A.: The effects of electron beam and γ-irradiation on polymer materials. In: Mark, J.E. (ed.) Physical Properties of Polymer. Handbook, 2nd edn. Springer, New York (2007)
54.
go back to reference Makuuchi, K., Chang, S. (eds.): Radiation Processing of Polymer Materials and its Industrial Applications. Wiley, New York (2012) Makuuchi, K., Chang, S. (eds.): Radiation Processing of Polymer Materials and its Industrial Applications. Wiley, New York (2012)
55.
go back to reference Zaharescu, T., Jipa S.: Radiochemical modifications in polymers. In: Arndt, K.F., Lechner, M.D. (eds.), Landolt-Börnstein Series, Polymer Solids and Polymer Melts, vol. VIII/6 C2, pp. 95–184. Springer, Heidelberg (2013) Zaharescu, T., Jipa S.: Radiochemical modifications in polymers. In: Arndt, K.F., Lechner, M.D. (eds.), Landolt-Börnstein Series, Polymer Solids and Polymer Melts, vol. VIII/6 C2, pp. 95–184. Springer, Heidelberg (2013)
56.
go back to reference Drobny, J.G.: Ionizing radiation and polymers: principles, technology, and applications. PDL Handbook Series, Elsevier (2012) Drobny, J.G.: Ionizing radiation and polymers: principles, technology, and applications. PDL Handbook Series, Elsevier (2012)
57.
go back to reference Cleland, M.R., Park, L.A., Chang, S.: Applications for radiation processes of material. Nucl. Instrum. Meth. Phys. Res. B 208, 66–73 (2003) Cleland, M.R., Park, L.A., Chang, S.: Applications for radiation processes of material. Nucl. Instrum. Meth. Phys. Res. B 208, 66–73 (2003)
58.
go back to reference Gehring, J.: With radiation crosslinking of polyolefin engineering plastics into the next millennium. Radiat. Phys. Chem. 57, 361–365 (2000)CrossRef Gehring, J.: With radiation crosslinking of polyolefin engineering plastics into the next millennium. Radiat. Phys. Chem. 57, 361–365 (2000)CrossRef
59.
go back to reference Nablo, S.V., Chrusciel, J., Cleghorn, D.A., Rangwalla, I.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 90–101 (2003) Nablo, S.V., Chrusciel, J., Cleghorn, D.A., Rangwalla, I.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 90–101 (2003)
60.
go back to reference Miller, A.: Approval and control of radiation processing, EB and gamma. Radiat. Phys. Chem. 31, 385–393 (1988) Miller, A.: Approval and control of radiation processing, EB and gamma. Radiat. Phys. Chem. 31, 385–393 (1988)
61.
go back to reference Cleland M.R., Park L.A.: Medium and high-energy electron beam radiation processing for commercial applications. Nucl. Instrum. Meth. Phys. Res. B 208, 74–89 (2003) Cleland M.R., Park L.A.: Medium and high-energy electron beam radiation processing for commercial applications. Nucl. Instrum. Meth. Phys. Res. B 208, 74–89 (2003)
62.
go back to reference Saylor, M.C., Parks, L.A., Herring, C.H.: Technical and regulatory for radiation sterilization facilities using electron beam accelerators. Nucl. Instrum. Meth. Phys. Res. B 79, 875–878 (1993) Saylor, M.C., Parks, L.A., Herring, C.H.: Technical and regulatory for radiation sterilization facilities using electron beam accelerators. Nucl. Instrum. Meth. Phys. Res. B 79, 875–878 (1993)
63.
go back to reference Pilette, L.: Effects of ionizing treatments on packaging—food simulant combinations. Packag. Technol. Sci. 3, 17–20 (1990)CrossRef Pilette, L.: Effects of ionizing treatments on packaging—food simulant combinations. Packag. Technol. Sci. 3, 17–20 (1990)CrossRef
64.
go back to reference Zimek, Z., Przybytniak, G., Nowicki, A., Mirkowski, K., Roman, K.: Optimization of electron beam crosslinking for cables. Radiat. Phys. Chem. 94, 161–165 (2014) Zimek, Z., Przybytniak, G., Nowicki, A., Mirkowski, K., Roman, K.: Optimization of electron beam crosslinking for cables. Radiat. Phys. Chem. 94, 161–165 (2014)
65.
go back to reference Bartoníček, B., Plaček, V., Hnát, V.: Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007)CrossRef Bartoníček, B., Plaček, V., Hnát, V.: Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007)CrossRef
66.
go back to reference Voit, W., Ware, T., Gall, K.: Radiation crosslinked shape-memory polymers. Polymer 51, 3551–3559 (2010)CrossRef Voit, W., Ware, T., Gall, K.: Radiation crosslinked shape-memory polymers. Polymer 51, 3551–3559 (2010)CrossRef
67.
go back to reference Banik, I., Bhowmick, A.K.: Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 58, 293–298 (2000)CrossRef Banik, I., Bhowmick, A.K.: Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 58, 293–298 (2000)CrossRef
68.
go back to reference Haque, M.E., Dafader, N.C., Akhtar, F., Ahmad, M.U.: Radiation dose required for the vulcanization of narural rubber latex. Radiat. Phys. Chem. 48, 505–510 (1996)CrossRef Haque, M.E., Dafader, N.C., Akhtar, F., Ahmad, M.U.: Radiation dose required for the vulcanization of narural rubber latex. Radiat. Phys. Chem. 48, 505–510 (1996)CrossRef
69.
go back to reference Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplast. Biomaterials 20, 1659–1688 (1999)CrossRef Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplast. Biomaterials 20, 1659–1688 (1999)CrossRef
70.
go back to reference Rezanejad, S., Kokab, M.: Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856–2865 (2007)CrossRef Rezanejad, S., Kokab, M.: Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856–2865 (2007)CrossRef
71.
go back to reference Mahapram, S., Poompradub, S.: Preparation of natural rubber (NB) latex/low density polyethylene (LDPE) blown film and its properties. Polym. Test. 30, 716–725 (2011)CrossRef Mahapram, S., Poompradub, S.: Preparation of natural rubber (NB) latex/low density polyethylene (LDPE) blown film and its properties. Polym. Test. 30, 716–725 (2011)CrossRef
72.
go back to reference Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blemds of ethylene vinylacetate copolymer and polyethylene. Radiat. Phys. Chem. 59, 501–505 (2000)CrossRef Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blemds of ethylene vinylacetate copolymer and polyethylene. Radiat. Phys. Chem. 59, 501–505 (2000)CrossRef
73.
go back to reference Zhu, G., Liang, G., Xu, Q., Yu, Q.: Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J. Appl. Polym. Sci. 90, 1589–1595 (2003)CrossRef Zhu, G., Liang, G., Xu, Q., Yu, Q.: Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J. Appl. Polym. Sci. 90, 1589–1595 (2003)CrossRef
74.
go back to reference Mohamed, R.M.: Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J. Ind. Eng. Chem. 19, 80–86 (2013)CrossRef Mohamed, R.M.: Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J. Ind. Eng. Chem. 19, 80–86 (2013)CrossRef
75.
go back to reference Crăciun, E., Jitaru, I., Zaharescu, T., Jipa, S.: Qualification of epoxy resin by radiochemical ageing. Optoelectr. Adv. Mater. Rapid Commun. 4, 1819–1822 (2010) Crăciun, E., Jitaru, I., Zaharescu, T., Jipa, S.: Qualification of epoxy resin by radiochemical ageing. Optoelectr. Adv. Mater. Rapid Commun. 4, 1819–1822 (2010)
76.
go back to reference Thomas, J.K.: Fundamental aspects of the radiolysis of solid polymers, crosslinking and degradation. Nucl. Instrum. Meth. Phys. Res. B 265, 1–7 (2007) Thomas, J.K.: Fundamental aspects of the radiolysis of solid polymers, crosslinking and degradation. Nucl. Instrum. Meth. Phys. Res. B 265, 1–7 (2007)
77.
go back to reference Rosiak, J.M., Ulanski, I.P., Pajewski, L.A., Yoshii, F., Makuuchi, K.: Radiation formation of hydrogel for biomedical purposes. Some remarks and comments. Radiat. Phys. Chem. 46, 161–168 (1995)CrossRef Rosiak, J.M., Ulanski, I.P., Pajewski, L.A., Yoshii, F., Makuuchi, K.: Radiation formation of hydrogel for biomedical purposes. Some remarks and comments. Radiat. Phys. Chem. 46, 161–168 (1995)CrossRef
78.
go back to reference Żenkiewicz, M., Dzwonkowski, J.: Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polym. Test. 26, 903–907 (2007)CrossRef Żenkiewicz, M., Dzwonkowski, J.: Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polym. Test. 26, 903–907 (2007)CrossRef
79.
go back to reference Zhang, Y., Liu, Q., Xiang, J., Frost, R.L.: Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particles sized kaolinites. Appl. Clay Sci. 95, 159–166 (2014) Zhang, Y., Liu, Q., Xiang, J., Frost, R.L.: Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particles sized kaolinites. Appl. Clay Sci. 95, 159–166 (2014)
80.
go back to reference Xiong, X., Wang, J., Jia, H., Fang, E., Ding, L.: Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98, 2208–2214 (2013)CrossRef Xiong, X., Wang, J., Jia, H., Fang, E., Ding, L.: Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98, 2208–2214 (2013)CrossRef
81.
go back to reference Ganter, M., Gronski, W., Semke, H., Zilg, T., Thomann, R., Mülhaupt, R.: Surface-compatibilized layered silicates—A novel class of nanofillers for rubbers with improved mechanical properties. Kautsch. Gummi Kunstst. 54(4), 166–171 (2001) Ganter, M., Gronski, W., Semke, H., Zilg, T., Thomann, R., Mülhaupt, R.: Surface-compatibilized layered silicates—A novel class of nanofillers for rubbers with improved mechanical properties. Kautsch. Gummi Kunstst. 54(4), 166–171 (2001)
82.
go back to reference Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: Rubber-Clay nanocomposite by solution blending. J. Appl. Polym. Sci. 87, 2216–2220 (2003) Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: Rubber-Clay nanocomposite by solution blending. J. Appl. Polym. Sci. 87, 2216–2220 (2003)
83.
go back to reference Lim, S.K., Lim, S.T., Kim, H.B., Chin, I., Choi, H.J.: Preparation and physical characterization of polyepichlorohydrin elastomer/clay nanocomposites. J. Macromol. Sci. Part B Phys. B 42(6), 1197–1199 (2003)CrossRef Lim, S.K., Lim, S.T., Kim, H.B., Chin, I., Choi, H.J.: Preparation and physical characterization of polyepichlorohydrin elastomer/clay nanocomposites. J. Macromol. Sci. Part B Phys. B 42(6), 1197–1199 (2003)CrossRef
84.
go back to reference Wu, C.M., Hwang, W.G., Tien, K.C., Chang, Y.C., Fu, H.L.: In: 11th National Conference on Science and Technology of National Defense, Taipei, Taiwan (2003) Wu, C.M., Hwang, W.G., Tien, K.C., Chang, Y.C., Fu, H.L.: In: 11th National Conference on Science and Technology of National Defense, Taipei, Taiwan (2003)
85.
go back to reference Jeon, H.S., Rameshwaram, J.K., Kim, G.: Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 42, 1000–1009 (2004)CrossRef Jeon, H.S., Rameshwaram, J.K., Kim, G.: Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 42, 1000–1009 (2004)CrossRef
86.
go back to reference Peeterbroeck, S., Lepoittevin, B., Pollet, E., Benali, S., Broekaert, C., Alexandre, M., Bonduel, D., Viville, P., Lazzaroni, R., Dubois, P.: Polymer layered silicate/carbon nanotube nanocomposites: The catalyzed polymerization approach. Polym. Eng. Sci. 46, 1022–1030 (2006)CrossRef Peeterbroeck, S., Lepoittevin, B., Pollet, E., Benali, S., Broekaert, C., Alexandre, M., Bonduel, D., Viville, P., Lazzaroni, R., Dubois, P.: Polymer layered silicate/carbon nanotube nanocomposites: The catalyzed polymerization approach. Polym. Eng. Sci. 46, 1022–1030 (2006)CrossRef
87.
go back to reference Malas, A., Pal, P., Das, Ch.K.: Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 55, 664−673 (2014) Malas, A., Pal, P., Das, Ch.K.: Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 55, 664−673 (2014)
88.
go back to reference Cabello, Ch., Saénz, A., López, L.I., Pérez, C., Barajas, L., Ávila, C.: Modificación superficial de (MWCNT) con H2SO4/HNO3 mediante ultrasonido. Afinidad 68, 370–374 (2012) Cabello, Ch., Saénz, A., López, L.I., Pérez, C., Barajas, L., Ávila, C.: Modificación superficial de (MWCNT) con H2SO4/HNO3 mediante ultrasonido. Afinidad 68, 370–374 (2012)
89.
go back to reference Cerin, O., Fontaine, G., Duquesne, S., Bourbigot, S.: Thermal stability of synthetic rubber nanocomposites. In: Mittal, V. (ed.) Recent Advance in Elastomeric Nanocomposites. Springer, Heidelberg (2011) Cerin, O., Fontaine, G., Duquesne, S., Bourbigot, S.: Thermal stability of synthetic rubber nanocomposites. In: Mittal, V. (ed.) Recent Advance in Elastomeric Nanocomposites. Springer, Heidelberg (2011)
90.
go back to reference Scotti, R., Conzatti, L., D’Arienzo, M., Di Credico, B., Giannini, L., Hanel, T., Stagnaro, P., Susanna, A., Tadiello, L., Morazzoni, F.: Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: role of the particle morphology on the filler reinforcing effect. Polymer 55, 1497–1506 (2014)CrossRef Scotti, R., Conzatti, L., D’Arienzo, M., Di Credico, B., Giannini, L., Hanel, T., Stagnaro, P., Susanna, A., Tadiello, L., Morazzoni, F.: Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: role of the particle morphology on the filler reinforcing effect. Polymer 55, 1497–1506 (2014)CrossRef
91.
go back to reference Dhere, N.G., Gadre, K.S.: Comparison of mechanical properties of EVA encapsulant in new and field-deployed PV modules. In: Proceedings of the 2nd World Photovoltaic Solar Energy Conference and Exhibition, Vienna, Austria, 6–10 July 1998 Dhere, N.G., Gadre, K.S.: Comparison of mechanical properties of EVA encapsulant in new and field-deployed PV modules. In: Proceedings of the 2nd World Photovoltaic Solar Energy Conference and Exhibition, Vienna, Austria, 6–10 July 1998
92.
go back to reference Dechthummarong, C., Wiengmoon, B., Chenvidhya, D., Jivacate, C., Kirtikara, K.: Physical deterioration of encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand. Sol. Energy Mater. Sol. Cells 94(9), 1437–1440 (2010) Dechthummarong, C., Wiengmoon, B., Chenvidhya, D., Jivacate, C., Kirtikara, K.: Physical deterioration of encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand. Sol. Energy Mater. Sol. Cells 94(9), 1437–1440 (2010)
93.
go back to reference ASTMD1435–05: Standard Practice for Outdoor Weathering of Plastics. ASTMD, Philadelphia (1985) ASTMD1435–05: Standard Practice for Outdoor Weathering of Plastics. ASTMD, Philadelphia (1985)
94.
go back to reference Stark, W., Jaunich, M.: Investigation of Ethylene Vinyl Acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011) Stark, W., Jaunich, M.: Investigation of Ethylene Vinyl Acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011)
95.
go back to reference Oreski, G., Wallner, G.M.: Damp heat induced physical aging of PV encapsulation materials. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm 2010), pp. 1−6. Las Vegas, NV, 2–5 June 2010 Oreski, G., Wallner, G.M.: Damp heat induced physical aging of PV encapsulation materials. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm 2010), pp. 1−6. Las Vegas, NV, 2–5 June 2010
96.
go back to reference Collins, G., Yoo, S.U., Recber, A., Jaffe, M.: Thermal analysis of complex relaxation processes in Poly(Desaminotyrosyl-Tyrosine Arylates). Polymer 48(4), 975–988 (2007) Collins, G., Yoo, S.U., Recber, A., Jaffe, M.: Thermal analysis of complex relaxation processes in Poly(Desaminotyrosyl-Tyrosine Arylates). Polymer 48(4), 975–988 (2007)
97.
go back to reference Saffell, J.R., Matthiesen, A., McIntyre, R., Ibar, J.P.: Comparing thermal stimulated current (TSC) with other thermal analytical methods to characterize the amorphous phase of polymers. Thermochim Acta 192, 243–264 (1991) Saffell, J.R., Matthiesen, A., McIntyre, R., Ibar, J.P.: Comparing thermal stimulated current (TSC) with other thermal analytical methods to characterize the amorphous phase of polymers. Thermochim Acta 192, 243–264 (1991)
98.
go back to reference Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRef Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRef
99.
go back to reference Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005) Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005)
100.
go back to reference Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRef Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRef
101.
go back to reference Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. (Oxford). 34, 479–515 (2009) Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. (Oxford). 34, 479–515 (2009)
102.
go back to reference Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRef Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRef
103.
go back to reference Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079 (2005) Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079 (2005)
104.
go back to reference Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRef Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRef
105.
go back to reference Yang, K.K., Wang, X.L., Wang, Y.Z.: Progress in Nanocomposite of Biodegradable Polymer. J Ind Eng Chem. 13, 485–500 (2007) Yang, K.K., Wang, X.L., Wang, Y.Z.: Progress in Nanocomposite of Biodegradable Polymer. J Ind Eng Chem. 13, 485–500 (2007)
106.
go back to reference Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRef Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRef
107.
go back to reference Ray, S.S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRef Ray, S.S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRef
108.
go back to reference Bandyopadhyay, S, Chen, R, Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159−160 (1999) Bandyopadhyay, S, Chen, R, Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159−160 (1999)
109.
go back to reference Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef
110.
go back to reference Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L -lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B Polym. Phys. 43, 478–487 (2005)CrossRef Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L -lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B Polym. Phys. 43, 478–487 (2005)CrossRef
111.
go back to reference Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRef Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRef
112.
go back to reference Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D Hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRef Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D Hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRef
113.
go back to reference Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRef Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRef
114.
go back to reference de Paula, E.L., Mano, V., Pereira, F.V.: Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d, l-lactide). Polym. Degrad. Stab. 96, 1631–1638 (2011)CrossRef de Paula, E.L., Mano, V., Pereira, F.V.: Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d, l-lactide). Polym. Degrad. Stab. 96, 1631–1638 (2011)CrossRef
115.
go back to reference Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRef Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRef
Metadata
Title
Thermal Degradation of Polymer Blends, Composites and Nanocomposites
Authors
P. M. Visakh
Olga B. Nazarenko
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-03464-5_1

Premium Partners