Skip to main content
Top

2015 | OriginalPaper | Chapter

5. Thermal Modeling of Supercapacitors

Authors : Guoping Xiong, Arpan Kundu, Timothy S. Fisher

Published in: Thermal Effects in Supercapacitors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The previous chapter reviewed the experimentally observed variations in electrochemical performance with temperature. The performance of supercapacitors depends strongly on operating temperature; therefore it is necessary to model temperature variations inside a supercapacitor. The major advantage of theoretical models is that they provide an opportunity to avoid time-consuming and expensive experiments by predicting performance in a wide range of applications and then building guidelines based on those predictions (Ike et al. in J Power Sources 273:264–277, 2015 [13]). Models can be used to study the thermal behavior of supercapacitors and thereby to develop new thermal management strategies. In this chapter, fundamentals of thermal modeling and various modeling approaches for temperature evolution are discussed from a theoretical standpoint.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51CrossRef Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51CrossRef
2.
go back to reference Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905CrossRef Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905CrossRef
3.
go back to reference Hijazi A, Kreczanik P, Bideaux E et al (2012) Thermal network model of supercapacitors stack. IEEE Trans Ind Electron 59:979–987CrossRef Hijazi A, Kreczanik P, Bideaux E et al (2012) Thermal network model of supercapacitors stack. IEEE Trans Ind Electron 59:979–987CrossRef
4.
go back to reference Guillemet P, Scudeller Y, Brousse T (2006) Multi-level reduced-order thermal modeling of electrochemical capacitors. J Power Sources 157:630–640CrossRef Guillemet P, Scudeller Y, Brousse T (2006) Multi-level reduced-order thermal modeling of electrochemical capacitors. J Power Sources 157:630–640CrossRef
5.
go back to reference Schiffer J, Linzen D, Sauer DU (2006) Heat generation in double layer capacitors. J Power Sources 160:765–772CrossRef Schiffer J, Linzen D, Sauer DU (2006) Heat generation in double layer capacitors. J Power Sources 160:765–772CrossRef
6.
go back to reference Laurendeau NM (2010) Statistical thermodynamics, fundamentals and applications. Cambridge University Press, Cambridge Laurendeau NM (2010) Statistical thermodynamics, fundamentals and applications. Cambridge University Press, Cambridge
7.
go back to reference Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632CrossRef Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632CrossRef
8.
go back to reference Gualous H, Louahlia H, Gallay R (2011) Supercapacitor characterization and thermal modelling with reversible and irreversible heat effect. IEEE Trans Power Electron 26:3402–3409CrossRef Gualous H, Louahlia H, Gallay R (2011) Supercapacitor characterization and thermal modelling with reversible and irreversible heat effect. IEEE Trans Power Electron 26:3402–3409CrossRef
9.
go back to reference Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587CrossRef Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587CrossRef
10.
go back to reference Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45 Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45
11.
go back to reference Lee DH, Kim US, Shin CB et al (2008) Modelling of the thermal behaviour of an ultracapacitor for a 42-V automotive electrical system. J Power Sources 175:664–668CrossRef Lee DH, Kim US, Shin CB et al (2008) Modelling of the thermal behaviour of an ultracapacitor for a 42-V automotive electrical system. J Power Sources 175:664–668CrossRef
12.
go back to reference Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450CrossRef Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450CrossRef
13.
go back to reference Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277CrossRef Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277CrossRef
14.
go back to reference Henson W (2007) Optimal battery/ultracapacitor storage combination. J Power Sources 179:417–423CrossRef Henson W (2007) Optimal battery/ultracapacitor storage combination. J Power Sources 179:417–423CrossRef
15.
go back to reference Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708CrossRef Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708CrossRef
16.
go back to reference Lajnef W, Vinassa JM, Briat O et al (2005) Specification and use of pulsed current profiles for ultracapacitors power cycling. Microelectron Reliab 45:1746–1749CrossRef Lajnef W, Vinassa JM, Briat O et al (2005) Specification and use of pulsed current profiles for ultracapacitors power cycling. Microelectron Reliab 45:1746–1749CrossRef
17.
go back to reference Buller S, Thele M, Doncker RWAAD et al (2005) Impedance based simulation models of supercapacitor and Li-Ion batteries for power electronic applications. In IEEE Trans. Ind Appl, 742–747 Buller S, Thele M, Doncker RWAAD et al (2005) Impedance based simulation models of supercapacitor and Li-Ion batteries for power electronic applications. In IEEE Trans. Ind Appl, 742–747
18.
go back to reference IEC62391-1 (2006) Fixed electric double-layer capacitors for use in electronic equipment. Part I: generic specification. In: International standard IEC 62391-1 IEC62391-1 (2006) Fixed electric double-layer capacitors for use in electronic equipment. Part I: generic specification. In: International standard IEC 62391-1
19.
go back to reference Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36:199–205CrossRef Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36:199–205CrossRef
20.
go back to reference De Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9:1231–1245CrossRef De Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9:1231–1245CrossRef
21.
go back to reference Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912CrossRef Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912CrossRef
22.
go back to reference Guillemet P, Pascot C, Scudeller Y (2008) Electro-thermal analysis of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and Systems, pp 224–228 Guillemet P, Pascot C, Scudeller Y (2008) Electro-thermal analysis of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and Systems, pp 224–228
23.
go back to reference Yang HZ, Zhang Y (2011) Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications. J Power Sources 196:8866–8873CrossRef Yang HZ, Zhang Y (2011) Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications. J Power Sources 196:8866–8873CrossRef
24.
go back to reference Levie RD (1967) Electrochemical response of porous and rough electrodes. Adv Electrochem Electrochem Eng 6:329–337 Levie RD (1967) Electrochemical response of porous and rough electrodes. Adv Electrochem Electrochem Eng 6:329–337
25.
go back to reference Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRef Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRef
26.
go back to reference Celzard A, Collas F, Mareche JF et al (2002) Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. J Power Sources 108:153–162CrossRef Celzard A, Collas F, Mareche JF et al (2002) Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. J Power Sources 108:153–162CrossRef
27.
go back to reference Paasch G, Micka K, Gersdorf P (1993) Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim Acta 38:2653–2662CrossRef Paasch G, Micka K, Gersdorf P (1993) Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim Acta 38:2653–2662CrossRef
28.
go back to reference Berrueta A, San Martín I, Hernández A et al (2014) Electro-thermal modelling of a supercapacitor and experimental validation. J Power Sources 259:154–165CrossRef Berrueta A, San Martín I, Hernández A et al (2014) Electro-thermal modelling of a supercapacitor and experimental validation. J Power Sources 259:154–165CrossRef
29.
go back to reference Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555CrossRef Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555CrossRef
30.
go back to reference Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159CrossRef Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159CrossRef
31.
go back to reference Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934CrossRef Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934CrossRef
32.
go back to reference Lajnef W, Vinassa JM, Azzopardi S et al (2004) First step in the reliability assessment of ultracapacitors used as power source in hybrid electric vehicles. Microelectron Reliab 44:1769–1773CrossRef Lajnef W, Vinassa JM, Azzopardi S et al (2004) First step in the reliability assessment of ultracapacitors used as power source in hybrid electric vehicles. Microelectron Reliab 44:1769–1773CrossRef
33.
go back to reference Xu X, Sammakia BG, Jung D et al (2011) Multiphysics approach to modeling supercapacitors for improving performance. In: Proceedings of the ASME 2011 pacific rim technical conference and exposition on packaging and integration of electronic and photonic systems. Portland, Oregon, USA Xu X, Sammakia BG, Jung D et al (2011) Multiphysics approach to modeling supercapacitors for improving performance. In: Proceedings of the ASME 2011 pacific rim technical conference and exposition on packaging and integration of electronic and photonic systems. Portland, Oregon, USA
34.
go back to reference Gualous H, Louahlia-Gualous H, Gallay R et al (2007) Supercapacitor thermal characterization in transient state. In IEEE industry applications conference. IEEE, New Orleans, LA, pp 722–729 Gualous H, Louahlia-Gualous H, Gallay R et al (2007) Supercapacitor thermal characterization in transient state. In IEEE industry applications conference. IEEE, New Orleans, LA, pp 722–729
35.
go back to reference Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166CrossRef Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166CrossRef
36.
go back to reference Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560CrossRef Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560CrossRef
37.
go back to reference Frivaldsky M, Cuntala J, Spanik P (2014) Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions. Int J Therm Sci 84:34–47CrossRef Frivaldsky M, Cuntala J, Spanik P (2014) Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions. Int J Therm Sci 84:34–47CrossRef
38.
go back to reference Chiang C-J, Yang J-L, Cheng W-C (2013) Dynamic modeling of the electrical and thermal behavior of ultracapacitors. In: IEEE conference on control and automation, pp 1839–1844 Chiang C-J, Yang J-L, Cheng W-C (2013) Dynamic modeling of the electrical and thermal behavior of ultracapacitors. In: IEEE conference on control and automation, pp 1839–1844
39.
go back to reference Chiang C-J, Yang J-L, Cheng W-C (2013) Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J Power Sources 234:234–243CrossRef Chiang C-J, Yang J-L, Cheng W-C (2013) Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J Power Sources 234:234–243CrossRef
40.
go back to reference d’Entremont A, Pilon L (2014) First-order thermal model of commercial EDLCs. Appl Therm Eng 67:439–446CrossRef d’Entremont A, Pilon L (2014) First-order thermal model of commercial EDLCs. Appl Therm Eng 67:439–446CrossRef
41.
go back to reference Miller JR, Butler SM (2008) The impact of cell temperature non-uniformity on electrochemical capacitor system reliability. In: 3rd European symposium on supercapacitors and applications, Rome, Italy Miller JR, Butler SM (2008) The impact of cell temperature non-uniformity on electrochemical capacitor system reliability. In: 3rd European symposium on supercapacitors and applications, Rome, Italy
42.
go back to reference Wang K, Zhang L, Ji B et al (2013) The thermal analysis on the stackable supercapacitor. Energy 59:440–444CrossRef Wang K, Zhang L, Ji B et al (2013) The thermal analysis on the stackable supercapacitor. Energy 59:440–444CrossRef
43.
go back to reference Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59CrossRef Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59CrossRef
44.
go back to reference Guillemet Ph, Pascot C, Scudeller Y (2008) Compact thermal modeling of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and systems, pp 118–122 Guillemet Ph, Pascot C, Scudeller Y (2008) Compact thermal modeling of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and systems, pp 118–122
45.
go back to reference Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93CrossRef Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93CrossRef
46.
go back to reference Pesaran AA, Keyser M (2001) Thermal characteristics of selected EV and HEV batteries. In: Sixteenth annual battery conference on applications and advances. Long Beach, CA, pp 219–225 Pesaran AA, Keyser M (2001) Thermal characteristics of selected EV and HEV batteries. In: Sixteenth annual battery conference on applications and advances. Long Beach, CA, pp 219–225
47.
go back to reference Barrade P, Rufer A (2008) Sizing of a supercapacitive tank: finite element thermal modeling. In 3rd European symposium on supercapacitors and applications, Rome, Italy Barrade P, Rufer A (2008) Sizing of a supercapacitive tank: finite element thermal modeling. In 3rd European symposium on supercapacitors and applications, Rome, Italy
48.
go back to reference Xu X, Sammakia BG, Murray BT et al (2011) Thermal modeling and heat management of supercapacitor modules by high velocity impinging fan flow. ASME 2011 international mechanical engineering congress and exposition. Denver, Colorado, pp 1029–1037 Xu X, Sammakia BG, Murray BT et al (2011) Thermal modeling and heat management of supercapacitor modules by high velocity impinging fan flow. ASME 2011 international mechanical engineering congress and exposition. Denver, Colorado, pp 1029–1037
49.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
50.
go back to reference d’Entremont A, Pilon L (2014) First-principles thermal modeling of electric double layer capacitors under constant-current cycling. J Power Sources 246:887–898CrossRef d’Entremont A, Pilon L (2014) First-principles thermal modeling of electric double layer capacitors under constant-current cycling. J Power Sources 246:887–898CrossRef
51.
go back to reference Stern O (1924) The theory of the electrolyte double layer. Z Elektrochem Angew Phys Chem 30:508–516 Stern O (1924) The theory of the electrolyte double layer. Z Elektrochem Angew Phys Chem 30:508–516
52.
go back to reference Wang H, Thiele A, Pilon L (2013) Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson–Nernst–Planck model. J Phys Chem C 117:18286–18297CrossRef Wang H, Thiele A, Pilon L (2013) Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson–Nernst–Planck model. J Phys Chem C 117:18286–18297CrossRef
53.
go back to reference Wang H, Pilon L (2012) Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta 64:130–139CrossRef Wang H, Pilon L (2012) Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta 64:130–139CrossRef
54.
go back to reference d’Entremont A, Wang H, Pilon L (2012) Scaling analysis of thermal behavior of electrical double layers. In: Proceedings of the ASME 2012 summer heat transfer conference, pp 395–403. American Society of Mechanical Engineers d’Entremont A, Wang H, Pilon L (2012) Scaling analysis of thermal behavior of electrical double layers. In: Proceedings of the ASME 2012 summer heat transfer conference, pp 395–403. American Society of Mechanical Engineers
55.
go back to reference Entremont Ad, Pilon L (2014) Scaling laws for heat generation and temperature oscillations in EDLCs under galvanostatic charging. Int J Heat Mass Transf 75:637–649CrossRef Entremont Ad, Pilon L (2014) Scaling laws for heat generation and temperature oscillations in EDLCs under galvanostatic charging. Int J Heat Mass Transf 75:637–649CrossRef
56.
go back to reference d’Entremont AL, Pilon L (2015) Thermal effects of asymmetric electrolytes in electric double layer capacitors. J Power Sources 273:196–209CrossRef d’Entremont AL, Pilon L (2015) Thermal effects of asymmetric electrolytes in electric double layer capacitors. J Power Sources 273:196–209CrossRef
Metadata
Title
Thermal Modeling of Supercapacitors
Authors
Guoping Xiong
Arpan Kundu
Timothy S. Fisher
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-20242-6_5