Skip to main content
Top

2020 | OriginalPaper | Chapter

Thermal Plasma Processes and Nanomaterial Preparation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plasma here refers to the fourth state of matter which has wide-ranging applications—right from industrial to biomedical. A word of caution: The term “plasma” should not be mixed up with the blood “plasma”—which is entirely different from the fourth state of matter—the subject area of this chapter. The interaction of this plasma—fourth state of matter—with the first (and to some extent the second state as well) state of matter is an area that brings about vast application potential. Primarily the energy content in a plasma state is orders of magnitude higher than the energy content of the other three states of matter. This large energy content is what is used for various applications mentioned above. This chapter contains in brief the basics of plasmas, types of plasma and nanoscience, and then describes in detail how plasmas can be used for various material processing—especially preparation of nanomaterials. Care has been taken to provide more experimental details in a simple flowing language. Images (mostly related to the author’s own work) have been included for better clarity and easy understanding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Balasubramanian C et al (2004) Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 15:370–373CrossRef Balasubramanian C et al (2004) Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 15:370–373CrossRef
go back to reference Balasubramanian C, Bellucci S, Castrucci P, De Crescenzi M, Bhoraskar SV (2004) Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem Phys Lett 383:188–191CrossRef Balasubramanian C, Bellucci S, Castrucci P, De Crescenzi M, Bhoraskar SV (2004) Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem Phys Lett 383:188–191CrossRef
go back to reference Balasubramanian C et al (2016) Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature. Nanotechnology 27:445701CrossRef Balasubramanian C et al (2016) Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature. Nanotechnology 27:445701CrossRef
go back to reference Banerjee I et al (2006) Preparation of c-Fe2O3 nanoparticles using DC thermal arc-plasma route, their characterization and magnetic properties. Scr Mater 54:1235–1240CrossRef Banerjee I et al (2006) Preparation of c-Fe2O3 nanoparticles using DC thermal arc-plasma route, their characterization and magnetic properties. Scr Mater 54:1235–1240CrossRef
go back to reference Bhave TM et al (2005) Oriented growth of nanocrystalline gamma ferric oxide in electrophoretically deposited films. Hyperfine Interact 160:199–209CrossRef Bhave TM et al (2005) Oriented growth of nanocrystalline gamma ferric oxide in electrophoretically deposited films. Hyperfine Interact 160:199–209CrossRef
go back to reference Castrucci P et al (2006) Silicon nanotubes: synthesis and characterization. Thin Solid Films 508:226–230 Castrucci P et al (2006) Silicon nanotubes: synthesis and characterization. Thin Solid Films 508:226–230
go back to reference Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRef Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRef
go back to reference De Crescenzi M et al (2005) Experimental imaging of silicon nanotubes. Appl Phys Lett 86:231901CrossRef De Crescenzi M et al (2005) Experimental imaging of silicon nanotubes. Appl Phys Lett 86:231901CrossRef
go back to reference Dokhale PA, Sali ND, Kumar PM, Bhoraskar SV, Rohatgi VK, Bhoraskar VN, Badrinarayanan S, Date SK (1997) Mater Sci Eng B 49:18 Dokhale PA, Sali ND, Kumar PM, Bhoraskar SV, Rohatgi VK, Bhoraskar VN, Badrinarayanan S, Date SK (1997) Mater Sci Eng B 49:18
go back to reference Fauchais P et al (2008) Thermal plasma applications. High Temp Mater Process 12:165–203CrossRef Fauchais P et al (2008) Thermal plasma applications. High Temp Mater Process 12:165–203CrossRef
go back to reference Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337CrossRef Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337CrossRef
go back to reference Koushika EM, Shanmugavelayutham G, Saravanan P, Balasubramanian C (2018) Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater Manuf Process 33:1701–1707CrossRef Koushika EM, Shanmugavelayutham G, Saravanan P, Balasubramanian C (2018) Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater Manuf Process 33:1701–1707CrossRef
go back to reference Kumar PM, Borse P, Rohatgi VK, Bhoraskar SV, Singh P, Sastry M (1994) Mater Chem Phys 36:354 Kumar PM, Borse P, Rohatgi VK, Bhoraskar SV, Singh P, Sastry M (1994) Mater Chem Phys 36:354
go back to reference Kumar V et al (2008) Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J Phys Chem C 112:17750CrossRef Kumar V et al (2008) Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J Phys Chem C 112:17750CrossRef
go back to reference Lee C-H, Rai P, Moon S-Y, Yu Y-T (2016) Thermal plasma synthesis of Si/SiC nanoparticles from silicon and activated carbon powders. Ceram Int 42:16469–16473 Lee C-H, Rai P, Moon S-Y, Yu Y-T (2016) Thermal plasma synthesis of Si/SiC nanoparticles from silicon and activated carbon powders. Ceram Int 42:16469–16473
go back to reference Madhu Kumar P, Balasubramanian C, Sali ND, Bhoraskar SV, Rohatgi VK, Badrinarayanan S (1999) Nanophase alumina synthesis in thermal arc plasma and characterization: correlation to gas-phase studies. Mater Sci Eng, B 63:215–227CrossRef Madhu Kumar P, Balasubramanian C, Sali ND, Bhoraskar SV, Rohatgi VK, Badrinarayanan S (1999) Nanophase alumina synthesis in thermal arc plasma and characterization: correlation to gas-phase studies. Mater Sci Eng, B 63:215–227CrossRef
go back to reference Meng H, Zhao F, Zhang Z (2012) Preparation of cobalt nanoparticles by direct current arc plasma evaporation method. Int J Refract Met Hard Mater 31:224CrossRef Meng H, Zhao F, Zhang Z (2012) Preparation of cobalt nanoparticles by direct current arc plasma evaporation method. Int J Refract Met Hard Mater 31:224CrossRef
go back to reference Orpe PB, Balasubramanian C, Mukherjee S (2017) Influence of DC arc current on the formation of cobalt-based nanostructures. Pramana J Phys 89:20CrossRef Orpe PB, Balasubramanian C, Mukherjee S (2017) Influence of DC arc current on the formation of cobalt-based nanostructures. Pramana J Phys 89:20CrossRef
go back to reference Patel J, Balasubramanian C, Sasmal C, Satyaprasad A (2018) Preparation of SiC nanowires and nanotubes by thermal arc plasma and study of parameters controlling its growth. Phys E 103:377–382 Patel J, Balasubramanian C, Sasmal C, Satyaprasad A (2018) Preparation of SiC nanowires and nanotubes by thermal arc plasma and study of parameters controlling its growth. Phys E 103:377–382
go back to reference Raut SA et al (2018) Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties. J Mag Mag Mater 449:232–242 Raut SA et al (2018) Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties. J Mag Mag Mater 449:232–242
go back to reference Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech 2:3CrossRef Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech 2:3CrossRef
go back to reference Sergiienko R et al (2007) Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Mater 55:3671CrossRef Sergiienko R et al (2007) Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Mater 55:3671CrossRef
go back to reference Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419CrossRef Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419CrossRef
go back to reference Siegmann S, Girshick S, Szépvölgyi J, Leparoux M, Shin J-W, Schreuders C, Rohr L, Ishigaki T, Jurewicz JW, Habib M, Baroud G, Gitzhofer F, Kambara M, Diaz JMA, Yoshida T (2008) Nano powder synthesis by plasmas. Report of the session held at the international round table on thermal plasma fundamentals and applications: Sharm el Sheikh, Egypt, Jan. 14–18, 2007, High Temp. Mater. Processes, 12:205–254 Siegmann S, Girshick S, Szépvölgyi J, Leparoux M, Shin J-W, Schreuders C, Rohr L, Ishigaki T, Jurewicz JW, Habib M, Baroud G, Gitzhofer F, Kambara M, Diaz JMA, Yoshida T (2008) Nano powder synthesis by plasmas. Report of the session held at the international round table on thermal plasma fundamentals and applications: Sharm el Sheikh, Egypt, Jan. 14–18, 2007, High Temp. Mater. Processes, 12:205–254
go back to reference Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80:4813–4815CrossRef Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80:4813–4815CrossRef
go back to reference Tsai P-C, Chen W-J, Chen J-H, Chang C-L (2009) Deposition and characterization of TiBCN films by cathodic arc plasma evaporation. Thin Solid Films 517:5044–5049CrossRef Tsai P-C, Chen W-J, Chen J-H, Chang C-L (2009) Deposition and characterization of TiBCN films by cathodic arc plasma evaporation. Thin Solid Films 517:5044–5049CrossRef
go back to reference Wan X, Fan Y, Ma W, Li S, Huang X, Yu J (2018) One-step synthesis of nano-silicon/graphene composites using thermal plasma approach. Mater Lett 220:144–147 Wan X, Fan Y, Ma W, Li S, Huang X, Yu J (2018) One-step synthesis of nano-silicon/graphene composites using thermal plasma approach. Mater Lett 220:144–147
Metadata
Title
Thermal Plasma Processes and Nanomaterial Preparation
Author
C. Balasubramanian
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-33774-2_3

Premium Partners