Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 10/2021

31-07-2021 | Original Research Article

Thermal Stability of Aluminum-Nickel Binary Alloys Containing the Al-Al3Ni Eutectic

Author: Frank Czerwinski

Published in: Metallurgical and Materials Transactions A | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The capability of Al–Ni binary alloys containing from 3 to 11 wt pct Ni and ranging from hypo-to hypereutectic compositions to retain strength at high temperatures was assessed through the uniaxial compression up to 500 °C and correlated with their solidification characteristics, phase composition and microstructure. The Al-Ni alloys, strengthened by the Al3Ni eutectic and proeutectic phases, at room temperature reached the yield stress of 70 to 100 MPa, being higher than 26 MPa measured for pure Al but well below 170 MPa achieved for the A380 (Al-8Si-3Cu, wt pct) alloy, tested under identical conditions. During high-temperature compression, the yield stress of Al-Ni alloys reduced at a steady rate with temperature, retaining at 400 °C and 500 °C about 50 pct and 25 pct, respectively, of its initial room temperature level. This yield stress reduction did not correlate with the low coarsening rate of Al3Ni phases and high hardness retention ratio of 75 to 80 pct, measured after 168 h heating at 500 °C. Although the higher Ni content resulted generally in the higher yield stress, the contribution of Al3Ni phases to retaining the alloy strength reduced with testing temperature; at all testing temperatures the finer Al3Ni eutectic phase was more effective than the coarser Al3Ni proeutectic phase, with an influence of the latter disappearing completely above 300 °C. An implication of the limited role of Al3Ni eutectic and proeutectic phases in room temperature strengthening of Al-Ni binary alloys and in retaining their strength at increased temperatures for development of novel aluminum alloys is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference [2] F. Czerwinski, “Thermal stability of aluminum alloys,” Materials, vol. 13, no. 15, p. 3441, 2020.CrossRef [2] F. Czerwinski, “Thermal stability of aluminum alloys,” Materials, vol. 13, no. 15, p. 3441, 2020.CrossRef
2.
go back to reference [28] Y. Fan and M. Makhlouf, “The Al-Al3Ni eutectic reaction: crystallography and mechanism of formaion,” Met Mater Trans A, vol. 46, no. 9, pp. 3808-3812, 2015.CrossRef [28] Y. Fan and M. Makhlouf, “The Al-Al3Ni eutectic reaction: crystallography and mechanism of formaion,” Met Mater Trans A, vol. 46, no. 9, pp. 3808-3812, 2015.CrossRef
3.
go back to reference [15] C. Suwanpreecha, P. Pandee, U. Patakham and C. Limmaneevichitr, “New generation of eutectic Al-Ni casting alloys for elevated temperature services,” Mater Sci Eng A, vol. 709, pp. 46-54, 2018.CrossRef [15] C. Suwanpreecha, P. Pandee, U. Patakham and C. Limmaneevichitr, “New generation of eutectic Al-Ni casting alloys for elevated temperature services,” Mater Sci Eng A, vol. 709, pp. 46-54, 2018.CrossRef
4.
go back to reference [20] L. Pan, S. Zhang, Y. Yang, N. Gupta, C. Yang, Y. Zhao and Z. Hu, “High-temperature mechanical properties of aluminum alloy matrix composites reinforced with Zr and Ni trialumnides synthesized by in situ reaction,” Metall Mater Trans A, vol. 51, p. 214–225, 2020.CrossRef [20] L. Pan, S. Zhang, Y. Yang, N. Gupta, C. Yang, Y. Zhao and Z. Hu, “High-temperature mechanical properties of aluminum alloy matrix composites reinforced with Zr and Ni trialumnides synthesized by in situ reaction,” Metall Mater Trans A, vol. 51, p. 214–225, 2020.CrossRef
5.
go back to reference [7] N. Belov, A. Alabin and D. Eskin, “Improving the properties of cold-rolled Al–6 pctNi sheets byalloying and heat treatment,” Scripta Mater, vol. 50, pp. 89-94, 2004.CrossRef [7] N. Belov, A. Alabin and D. Eskin, “Improving the properties of cold-rolled Al–6 pctNi sheets byalloying and heat treatment,” Scripta Mater, vol. 50, pp. 89-94, 2004.CrossRef
6.
go back to reference C. Suwanpreecha, J. Toinin, P. Pandee, D. Dunand and C. Limmaneevichitr: J. M J. Met. Mater. Miner., 2019, vol. 29, no. 2, pp. 2019-06-29. C. Suwanpreecha, J. Toinin, P. Pandee, D. Dunand and C. Limmaneevichitr: J. M J. Met. Mater. Miner., 2019, vol. 29, no. 2, pp. 2019-06-29.
7.
go back to reference [11] F. Czerwinski, “Thermal stability of Aluminum-Cerium binary alloys containing the Al-Al11Ce3 eutectic,” Mater Scie Eng A, vol. 809, p. 140973, 2021.CrossRef [11] F. Czerwinski, “Thermal stability of Aluminum-Cerium binary alloys containing the Al-Al11Ce3 eutectic,” Mater Scie Eng A, vol. 809, p. 140973, 2021.CrossRef
8.
go back to reference M. Aniolek, T. Smith and F. Czerwinski, Combining Differential Scanning Calorimetry and Cooling-Heating Curve Thermal Analysis to study the melting and solidification behavior of Al-Ce binary alloys, Metals, vol. 11, p. 372, 2021.CrossRef M. Aniolek, T. Smith and F. Czerwinski, Combining Differential Scanning Calorimetry and Cooling-Heating Curve Thermal Analysis to study the melting and solidification behavior of Al-Ce binary alloys, Metals, vol. 11, p. 372, 2021.CrossRef
9.
go back to reference P. Nash, M. Singleton and J. Murray. In: Nash, P., Ed., Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH, 1991. P. Nash, M. Singleton and J. Murray. In: Nash, P., Ed., Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH, 1991.
10.
go back to reference [12] H. Okamoto, “Al-Ni (aluminum-nickel),” J Phs Eqil and Diff, vol. 25, p. 394, 2004.CrossRef [12] H. Okamoto, “Al-Ni (aluminum-nickel),” J Phs Eqil and Diff, vol. 25, p. 394, 2004.CrossRef
11.
go back to reference [13] Y. Iwasaki, Y. Katayama, S. Komatsu and H. Amano, “Equilibrium solid solubility of nickel to aluminum re-investigated by resistometry,” Journal of Japan Institute of Light Metals, vol. 57, no. 4, pp. 157-162, 2007.CrossRef [13] Y. Iwasaki, Y. Katayama, S. Komatsu and H. Amano, “Equilibrium solid solubility of nickel to aluminum re-investigated by resistometry,” Journal of Japan Institute of Light Metals, vol. 57, no. 4, pp. 157-162, 2007.CrossRef
12.
go back to reference [14] W. Fink and L. Wiley, Trans AIME, vol. 111, pp. 293-303, 1934. [14] W. Fink and L. Wiley, Trans AIME, vol. 111, pp. 293-303, 1934.
13.
go back to reference [16] N. Belov, D. Eskin and A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Amsterdam: Elsevier, 2005. [16] N. Belov, D. Eskin and A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Amsterdam: Elsevier, 2005.
14.
go back to reference [17] K. Blobaum, D. Van Heerden, A. Gavens and T. Weihs, “Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation,” Acta Mater, vol. 51, no. 13, pp. 3871-3884, 2003.CrossRef [17] K. Blobaum, D. Van Heerden, A. Gavens and T. Weihs, “Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation,” Acta Mater, vol. 51, no. 13, pp. 3871-3884, 2003.CrossRef
15.
go back to reference [26] A. Yamamoto and H. Tsubakino, “Al9Ni2 precipitates formed in an Al-Ni dilute alloy,” Scripta Mater, vol. 37, no. 11, pp. 1721-1725, 1997.CrossRef [26] A. Yamamoto and H. Tsubakino, “Al9Ni2 precipitates formed in an Al-Ni dilute alloy,” Scripta Mater, vol. 37, no. 11, pp. 1721-1725, 1997.CrossRef
16.
go back to reference [18] A. Ustinov and S. Demchenkov, “Influence of metastable Al9Ni2 phase on the sequence of phase transformations initiated by heating of Al/Ni multilayer foils produced by EBPVD method,” Intermetallics, vol. 84, pp. 82-91, 2017.CrossRef [18] A. Ustinov and S. Demchenkov, “Influence of metastable Al9Ni2 phase on the sequence of phase transformations initiated by heating of Al/Ni multilayer foils produced by EBPVD method,” Intermetallics, vol. 84, pp. 82-91, 2017.CrossRef
17.
go back to reference [4] P. Rohatgi and K. Prabhakar, “Wrought aluminum-nickel alloys for high strength-high conductivity applications,” Metall Mater Trans A, vol. 6, p. 1003, 1975.CrossRef [4] P. Rohatgi and K. Prabhakar, “Wrought aluminum-nickel alloys for high strength-high conductivity applications,” Metall Mater Trans A, vol. 6, p. 1003, 1975.CrossRef
18.
go back to reference K.A. Jackson, J.D. Hunt, Trans Soc Min Eng AIME 1966; 236:1129. K.A. Jackson, J.D. Hunt, Trans Soc Min Eng AIME 1966; 236:1129.
19.
go back to reference F.Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk, J.C. Gachon, J. Alloys Compd., 2004, vol. 364, pp. 121-126.CrossRef F.Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk, J.C. Gachon, J. Alloys Compd., 2004, vol. 364, pp. 121-126.CrossRef
20.
go back to reference [22] Z. Ding, Q. Hu and W. Lu, “Continuous morphological transition and its mechanism of Al3Ni phase at the liquid–solid interface during solidification,” Metall Mater Trans A, vol. 50, p. 556–561, 2019.CrossRef [22] Z. Ding, Q. Hu and W. Lu, “Continuous morphological transition and its mechanism of Al3Ni phase at the liquid–solid interface during solidification,” Metall Mater Trans A, vol. 50, p. 556–561, 2019.CrossRef
21.
go back to reference F. Czerwinski and B. ShalchiAmirkhiz, On the Al-Al11Ce3 eutectic transformation in aluminum-cerium binary alloys. Materials, vol. 13, no. 20, p. 4549, 2020.CrossRef F. Czerwinski and B. ShalchiAmirkhiz, On the Al-Al11Ce3 eutectic transformation in aluminum-cerium binary alloys. Materials, vol. 13, no. 20, p. 4549, 2020.CrossRef
22.
go back to reference [9] C. Pohla and P. Ryder, “Crystalline and quasicrystalline phases in rapidly solidified Al-Ni alloys,” Acta Mater, vol. 45, pp. 2155-2166, 1997.CrossRef [9] C. Pohla and P. Ryder, “Crystalline and quasicrystalline phases in rapidly solidified Al-Ni alloys,” Acta Mater, vol. 45, pp. 2155-2166, 1997.CrossRef
23.
go back to reference [23] I. Loginova, M. Sazerat and P. Loginov, “Evaluation of microstructure and hardness of novel Al-Fe-Ni alloys with high thermal stability for laser additive manufacturing,” JOM, vol. 72, p. 3744–3752, 2020.CrossRef [23] I. Loginova, M. Sazerat and P. Loginov, “Evaluation of microstructure and hardness of novel Al-Fe-Ni alloys with high thermal stability for laser additive manufacturing,” JOM, vol. 72, p. 3744–3752, 2020.CrossRef
24.
go back to reference [24] H. Smartt and T. Courtney, “The kinetics of coarsening in the Al-Al3Ni System,” Metall Mater Trans A, vol. 7, p. 123–126, 1976.CrossRef [24] H. Smartt and T. Courtney, “The kinetics of coarsening in the Al-Al3Ni System,” Metall Mater Trans A, vol. 7, p. 123–126, 1976.CrossRef
25.
go back to reference [6] D. Jones and G. May, “The thermal stability of the Al-Al3Ni eutectic in a temperature gradien,” Acta Metall, vol. 23, no. 1, pp. 29-34, 1975.CrossRef [6] D. Jones and G. May, “The thermal stability of the Al-Al3Ni eutectic in a temperature gradien,” Acta Metall, vol. 23, no. 1, pp. 29-34, 1975.CrossRef
26.
go back to reference [29] K. Gschneidner and F. Calderwood, “The Al–Ce (aluminum–cerium) system,” Bull Alloy Phase Diagr, vol. 9, no. 6, p. 669–672, 1988.CrossRef [29] K. Gschneidner and F. Calderwood, “The Al–Ce (aluminum–cerium) system,” Bull Alloy Phase Diagr, vol. 9, no. 6, p. 669–672, 1988.CrossRef
27.
go back to reference [3] W. Pearson, Handbook of Lattice Spacing and Structures of Metals and Alloys, New York: Pergamon Press, 1967. [3] W. Pearson, Handbook of Lattice Spacing and Structures of Metals and Alloys, New York: Pergamon Press, 1967.
28.
go back to reference [8] P. Villars, Material Phases Data System (MPDS), PAULING FILE Multinaries Edition – sd_1821912, CH-6354 Vitznau, Switzerland: Springer, 2012. [8] P. Villars, Material Phases Data System (MPDS), PAULING FILE Multinaries Edition – sd_1821912, CH-6354 Vitznau, Switzerland: Springer, 2012.
29.
go back to reference [10] H. Okamoto, “Al-Ni (aluminum-nickel),” J. Phase Equilibria, vol. 14, p. 257–259, 1993.CrossRef [10] H. Okamoto, “Al-Ni (aluminum-nickel),” J. Phase Equilibria, vol. 14, p. 257–259, 1993.CrossRef
Metadata
Title
Thermal Stability of Aluminum-Nickel Binary Alloys Containing the Al-Al3Ni Eutectic
Author
Frank Czerwinski
Publication date
31-07-2021
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 10/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06372-9

Other articles of this Issue 10/2021

Metallurgical and Materials Transactions A 10/2021 Go to the issue

Premium Partners