Skip to main content
Top
Published in: Journal of Polymer Research 9/2015

01-09-2015 | Original Paper

Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker

Authors: Le-Thu T. Nguyen, Ha Tran Nguyen, Thuy Thu Truong

Published in: Journal of Polymer Research | Issue 9/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on Diels-Alder reaction, a furyl-telechelic semicrystalline polycaprolactone was crosslinked by a tris-maleimide crosslinker. The synthesized precursors and network were fully characterized via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopies, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle powder X-ray diffraction (XRD) measurements. The obtained material showed mendability of scratches under thermal treatment, as evidenced by optical microscopy and tensile analysis. The mending process was a combination of the shape recovery effect favoring scratch closure and the re-crosslinking of the cleaved Diels-Alder bonds at temperatures slightly above the melting transition of polycaprolactone chains. A scratch healing efficiency determined by tensile tests of about 70 % was achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef
2.
go back to reference Hillewaere XKD, Teixeira RFA, Nguyen L-TT, Ramos JA, Rahier H, Du Prez FE (2014) Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv Funct Mater 24:5575–5583CrossRef Hillewaere XKD, Teixeira RFA, Nguyen L-TT, Ramos JA, Rahier H, Du Prez FE (2014) Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv Funct Mater 24:5575–5583CrossRef
3.
go back to reference Fereidoon A, Ghorbanzadeh Ahangari M, Jahanshahi M (2013) Effect of nanoparticles on the morphology and thermal properties of self-healing poly(urea-formaldehyde) microcapsules. J Polym Res 20:1–8CrossRef Fereidoon A, Ghorbanzadeh Ahangari M, Jahanshahi M (2013) Effect of nanoparticles on the morphology and thermal properties of self-healing poly(urea-formaldehyde) microcapsules. J Polym Res 20:1–8CrossRef
4.
go back to reference Rahimi A, Amiri S (2014) Self-healing hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Polym Res 22:1–8 Rahimi A, Amiri S (2014) Self-healing hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Polym Res 22:1–8
5.
6.
go back to reference Zhang Y, v Y-h, Zhang Z-p (2015) The influence of 2,4-toluene diisocyanate content on the intrinsic self-healing performance of polyurethane at room-temperature. J Polym Res 22:1–6CrossRef Zhang Y, v Y-h, Zhang Z-p (2015) The influence of 2,4-toluene diisocyanate content on the intrinsic self-healing performance of polyurethane at room-temperature. J Polym Res 22:1–6CrossRef
7.
go back to reference Cheng C, Bai X, Zhang X, Li H, Huang Q, Tu Y (2015) Self-healing polymers based on a photo-active reversible addition-fragmentation chain transfer (RAFT) agent. J Polym Res 22:1–8CrossRef Cheng C, Bai X, Zhang X, Li H, Huang Q, Tu Y (2015) Self-healing polymers based on a photo-active reversible addition-fragmentation chain transfer (RAFT) agent. J Polym Res 22:1–8CrossRef
8.
go back to reference Zhang MQ, Rong MZ (2013) Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym Chem 4:4878–4884CrossRef Zhang MQ, Rong MZ (2013) Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym Chem 4:4878–4884CrossRef
9.
go back to reference Liu Y-L, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym Chem 4:2194–2205CrossRef Liu Y-L, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym Chem 4:2194–2205CrossRef
10.
go back to reference Mignard N, Okhay N, Jegat C, Taha M (2013) Facile elaboration of polymethylmethacrylate / polyurethane interpenetrating networks using Diels-Alder reactions. J Polym Res 20:1–13CrossRef Mignard N, Okhay N, Jegat C, Taha M (2013) Facile elaboration of polymethylmethacrylate / polyurethane interpenetrating networks using Diels-Alder reactions. J Polym Res 20:1–13CrossRef
11.
go back to reference Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef
12.
go back to reference Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145CrossRef Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145CrossRef
13.
go back to reference Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296CrossRef Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296CrossRef
14.
go back to reference Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42:1906–1912CrossRef Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42:1906–1912CrossRef
15.
go back to reference Kavitha AA, Singha NK (2009) “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl Mater Interfaces 1:1427–1436CrossRef Kavitha AA, Singha NK (2009) “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl Mater Interfaces 1:1427–1436CrossRef
16.
go back to reference Scheltjens G, Diaz MM, Brancart J, Assche GV, Mele BV (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73:413–420CrossRef Scheltjens G, Diaz MM, Brancart J, Assche GV, Mele BV (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73:413–420CrossRef
17.
go back to reference Bose RK, Kötteritzsch J, Garcia SJ, Hager MD, Schubert US, van der Zwaag S (2014) A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J Polym Sci Part A Polym Chem 52:1669–1675CrossRef Bose RK, Kötteritzsch J, Garcia SJ, Hager MD, Schubert US, van der Zwaag S (2014) A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J Polym Sci Part A Polym Chem 52:1669–1675CrossRef
18.
go back to reference Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177CrossRef Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177CrossRef
19.
go back to reference Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef
20.
go back to reference Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379CrossRef Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379CrossRef
21.
go back to reference Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135CrossRef Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135CrossRef
22.
go back to reference Xu H, Yu C, Wang S, Malyarchuk V, Xie T, Rogers JA (2013) Deformable, programmable, and shape-memorizing micro-optics. Adv Funct Mater 23:3299–3306CrossRef Xu H, Yu C, Wang S, Malyarchuk V, Xie T, Rogers JA (2013) Deformable, programmable, and shape-memorizing micro-optics. Adv Funct Mater 23:3299–3306CrossRef
23.
go back to reference Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef
24.
go back to reference Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Månson J-AE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260CrossRef Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Månson J-AE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260CrossRef
25.
go back to reference Kirkby EL, Michaud VJ, Månson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50:5533–5538CrossRef Kirkby EL, Michaud VJ, Månson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50:5533–5538CrossRef
26.
go back to reference Li G, Zhang P (2013) A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. Polymer 54:5075–5086CrossRef Li G, Zhang P (2013) A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. Polymer 54:5075–5086CrossRef
27.
go back to reference Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928CrossRef Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928CrossRef
28.
go back to reference Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting Shape Memory Assisted Self-Healing (SMASH). ACS Appl Mater Interfaces 3:152–161CrossRef Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting Shape Memory Assisted Self-Healing (SMASH). ACS Appl Mater Interfaces 3:152–161CrossRef
29.
go back to reference Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156CrossRef Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156CrossRef
30.
go back to reference García-Huete N, Laza J, Cuevas J, Gonzalo B, Vilas J, León L (2014) Shape memory effect for recovering surface damages on polymer substrates. J Polym Res 21:1–10CrossRef García-Huete N, Laza J, Cuevas J, Gonzalo B, Vilas J, León L (2014) Shape memory effect for recovering surface damages on polymer substrates. J Polym Res 21:1–10CrossRef
31.
go back to reference Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, Wang Y (2012) Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym Chem 3:1390–1393CrossRef Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, Wang Y (2012) Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym Chem 3:1390–1393CrossRef
32.
go back to reference Rivero G, Nguyen L-TT, Hillewaere XKD, Du Prez FE (2014) One-Pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–2018CrossRef Rivero G, Nguyen L-TT, Hillewaere XKD, Du Prez FE (2014) One-Pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–2018CrossRef
33.
go back to reference Lu X, Fei G, Xia H, Zhao Y (2014) Ultrasound healable shape memory dynamic polymers. J Mater Chem A 2:16051–16060CrossRef Lu X, Fei G, Xia H, Zhao Y (2014) Ultrasound healable shape memory dynamic polymers. J Mater Chem A 2:16051–16060CrossRef
34.
go back to reference Heo Y, Sodano HA (2014) Self-healing polyurethanes with shape recovery. Adv Funct Mater 24:5261–5268CrossRef Heo Y, Sodano HA (2014) Self-healing polyurethanes with shape recovery. Adv Funct Mater 24:5261–5268CrossRef
35.
go back to reference Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256CrossRef Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256CrossRef
36.
go back to reference Narita M, Teramoto T, Okawara M (1971) Syntheses and reactions of functional polymers. LIV. Syntheses and polymerizations of O-substituted-N-hydroxymaleimides. Bull Chem Soc Jpn 44:1084–1089CrossRef Narita M, Teramoto T, Okawara M (1971) Syntheses and reactions of functional polymers. LIV. Syntheses and polymerizations of O-substituted-N-hydroxymaleimides. Bull Chem Soc Jpn 44:1084–1089CrossRef
37.
go back to reference Nguyen L-TT, Gokmen MT, Du Prez FE (2013) Kinetic comparison of 13 homogeneous thiol-X reactions. Polym Chem 4:5527–5536CrossRef Nguyen L-TT, Gokmen MT, Du Prez FE (2013) Kinetic comparison of 13 homogeneous thiol-X reactions. Polym Chem 4:5527–5536CrossRef
38.
go back to reference Mellouki A, Herman M, Demaison J, Lemoine B, Margulès L (1999) Rotational analysis of the ν7 band in furan (C4H4O). J Mol Spectrosc 198:348–357CrossRef Mellouki A, Herman M, Demaison J, Lemoine B, Margulès L (1999) Rotational analysis of the ν7 band in furan (C4H4O). J Mol Spectrosc 198:348–357CrossRef
39.
go back to reference Mani R, Bhattacharya M (2001) Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J 37:515–526CrossRef Mani R, Bhattacharya M (2001) Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J 37:515–526CrossRef
Metadata
Title
Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker
Authors
Le-Thu T. Nguyen
Ha Tran Nguyen
Thuy Thu Truong
Publication date
01-09-2015
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 9/2015
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0827-y

Other articles of this Issue 9/2015

Journal of Polymer Research 9/2015 Go to the issue

Premium Partners