Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals

Authors : Hessam Jahangiri, João Santos, Andreas Hornung, Miloud Ouadi

Published in: Catalysis for Clean Energy and Environmental Sustainability

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The considerable growth in energy demands and limited fossil fuel sources, together with environmental concerns, have forced the study of renewable, green and sustainable energy sources. Biomass and its residues can be transformed into valued chemicals and fuels with several thermal conversion processes, which are combustion, gasification and pyrolysis. Combustion is a chemical process that involves the rapid reaction of substances with oxygen, producing heat. Gasification produces synthesis gas at high temperatures (800–1200 °C) to generate heat and power. Pyrolysis has been applied for many years for charcoal formation, while intermediate and fast pyrolysis processes have become of significant interest in recent years. The reason for this interest is that these processes provide different bio-products (bio-oil, synthesis gas and biochar), which can be applied directly in various applications or as a sustainable energy carrier. The present chapter covers an overview of the fundamentals of slow, intermediate and fast pyrolysis, followed by the properties and applicability of the pyrolysis products. This study also identifies the features and advantages of the thermo-catalytic reforming (TCR) process in comparison with other technologies. This report presents a comprehensive literature review of bio-oil production and upgrading methods. In addition, the most common catalysts and supports for different upgrading methods are introduced. Finally, the current pathways for 2-methylfuran (2-MF) formation and the selection of xylose-rich biomass are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gilland B (1995) World-population, economic-growth, and energy demand, 1990–2100—a review of projections. Popul Dev Rev 21(3):507–539CrossRef Gilland B (1995) World-population, economic-growth, and energy demand, 1990–2100—a review of projections. Popul Dev Rev 21(3):507–539CrossRef
2.
go back to reference OECD (2016) OECD economic outlook. OECD, Paris OECD (2016) OECD economic outlook. OECD, Paris
3.
go back to reference Sieminski A (2014) International energy outlook. Energy information administration (EIA), Washington, DC, p 18 Sieminski A (2014) International energy outlook. Energy information administration (EIA), Washington, DC, p 18
4.
go back to reference Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S (2016) Guidelines for emergy evaluation of first, second and third generation biofuels. Renew Sustain Energy Rev 66:221–227CrossRef Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S (2016) Guidelines for emergy evaluation of first, second and third generation biofuels. Renew Sustain Energy Rev 66:221–227CrossRef
5.
go back to reference Easterbrook DJ (2016) Chap. 9—Greenhouse gases. In: Evidence-based climate science, 2nd edn. Elsevier, Amsterdam, pp 163–173CrossRef Easterbrook DJ (2016) Chap. 9—Greenhouse gases. In: Evidence-based climate science, 2nd edn. Elsevier, Amsterdam, pp 163–173CrossRef
6.
go back to reference Rees RM, Flack S, Maxwell K, Mistry A (2014) Air: Greenhouse gases from Agriculture A2. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic Press, Oxford, pp 293–304CrossRef Rees RM, Flack S, Maxwell K, Mistry A (2014) Air: Greenhouse gases from Agriculture A2. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic Press, Oxford, pp 293–304CrossRef
7.
go back to reference Yang Z, Wei T, Moore JC, Chou J, Dong W, Dai R et al (2016) A new consumption-based accounting model for greenhouse gases from 1948 to 2012. J Clean Prod 133:368–377CrossRef Yang Z, Wei T, Moore JC, Chou J, Dong W, Dai R et al (2016) A new consumption-based accounting model for greenhouse gases from 1948 to 2012. J Clean Prod 133:368–377CrossRef
8.
go back to reference Bennaceur K, Gielen D, Kerr T, Tam C (2008) CO2 capture and storage: a key carbon abatement option. OECD, Paris Bennaceur K, Gielen D, Kerr T, Tam C (2008) CO2 capture and storage: a key carbon abatement option. OECD, Paris
9.
go back to reference Birol F (2016) Key world energy statistics. International Energy Agency (IEA), Washington, DC Birol F (2016) Key world energy statistics. International Energy Agency (IEA), Washington, DC
10.
go back to reference Department for Business EIS (2018) 2018 UK Greenhouse gas emissions, provisional figures. National Statistics, London Department for Business EIS (2018) 2018 UK Greenhouse gas emissions, provisional figures. National Statistics, London
11.
go back to reference Demirbas A (2008) Biodiesel. Springer, Berlin Demirbas A (2008) Biodiesel. Springer, Berlin
12.
go back to reference McCollum D, Yang C (2009) Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy 37(12):5580–5596CrossRef McCollum D, Yang C (2009) Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy 37(12):5580–5596CrossRef
13.
go back to reference Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia-Pac J Chem Eng 7:S254–SS62CrossRef Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia-Pac J Chem Eng 7:S254–SS62CrossRef
14.
go back to reference Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68CrossRef Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68CrossRef
15.
go back to reference Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef
16.
go back to reference Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16CrossRef Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16CrossRef
17.
go back to reference Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRef Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRef
18.
go back to reference Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238CrossRef Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238CrossRef
19.
go back to reference Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195CrossRef Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195CrossRef
20.
go back to reference Righelato R, Spracklen DV (2007) Environment—carbon mitigation by biofuels or by saving and restoring forests? Science 317(5840):902CrossRef Righelato R, Spracklen DV (2007) Environment—carbon mitigation by biofuels or by saving and restoring forests? Science 317(5840):902CrossRef
21.
go back to reference Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348–358CrossRef Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348–358CrossRef
22.
go back to reference Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28CrossRef Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28CrossRef
23.
go back to reference Jansen RA (2012) Second generation biofuels and biomass: essential guide for investors, scientists and decision makers. Wiley, Hoboken, NJCrossRef Jansen RA (2012) Second generation biofuels and biomass: essential guide for investors, scientists and decision makers. Wiley, Hoboken, NJCrossRef
24.
go back to reference Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580CrossRef Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580CrossRef
25.
go back to reference Liew WH, Hassim MH, Ng DKS (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29CrossRef Liew WH, Hassim MH, Ng DKS (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29CrossRef
26.
go back to reference Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, CambridgeCrossRef Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, CambridgeCrossRef
27.
go back to reference Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234CrossRef Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234CrossRef
28.
go back to reference Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefin 2(5):455–469CrossRef Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefin 2(5):455–469CrossRef
29.
go back to reference Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538CrossRef Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538CrossRef
30.
go back to reference Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360CrossRef Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360CrossRef
31.
go back to reference Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev 30:1035–1046CrossRef Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev 30:1035–1046CrossRef
32.
go back to reference Zhu LD, Ketola T (2012) Microalgae production as a biofuel feedstock: risks and challenges. Int J Sust Dev World 19(3):268–274CrossRef Zhu LD, Ketola T (2012) Microalgae production as a biofuel feedstock: risks and challenges. Int J Sust Dev World 19(3):268–274CrossRef
33.
go back to reference Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Pt A Recov Utilization Environ Eff 31(2):163–168CrossRef Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Pt A Recov Utilization Environ Eff 31(2):163–168CrossRef
34.
go back to reference Kita K, Okada S, Sekino H, Imou K, Yokoyama S, Amano T (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energy 87(7):2420–2423CrossRef Kita K, Okada S, Sekino H, Imou K, Yokoyama S, Amano T (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energy 87(7):2420–2423CrossRef
35.
go back to reference Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48(5):251–259CrossRef Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48(5):251–259CrossRef
36.
go back to reference Picazo-Espinosa R, González-López J, Manzanera M (2011) Bioresources for third-generation biofuels. In: Biofuel’s engineering process technology, vol 6, pp 115–133 Picazo-Espinosa R, González-López J, Manzanera M (2011) Bioresources for third-generation biofuels. In: Biofuel’s engineering process technology, vol 6, pp 115–133
37.
go back to reference Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86(11):1349–1353CrossRef Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86(11):1349–1353CrossRef
38.
go back to reference Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90(1):21–50CrossRef Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90(1):21–50CrossRef
39.
go back to reference Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46CrossRef Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46CrossRef
40.
go back to reference Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. Clean Prod 13(5):509–515CrossRef Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. Clean Prod 13(5):509–515CrossRef
41.
go back to reference Gopal P, Sivaram N, Barik D (2019) Paper industry wastes and energy generation from wastes. In: Energy from toxic organic waste for heat and power generation. Elsevier, Amsterdam, pp 83–97CrossRef Gopal P, Sivaram N, Barik D (2019) Paper industry wastes and energy generation from wastes. In: Energy from toxic organic waste for heat and power generation. Elsevier, Amsterdam, pp 83–97CrossRef
42.
go back to reference Quina MJ, Bordado JC, Quinta-Ferreira RM (2011) Air pollution control in municipal solid waste incinerators. In: The impact of air pollution on health, economy, environment and agricultural sources. InTech, Rijeka Quina MJ, Bordado JC, Quinta-Ferreira RM (2011) Air pollution control in municipal solid waste incinerators. In: The impact of air pollution on health, economy, environment and agricultural sources. InTech, Rijeka
43.
go back to reference Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Conver Manage 51(7):1412–1421CrossRef Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Conver Manage 51(7):1412–1421CrossRef
44.
go back to reference Kamm B, Gruber PR, Kamm M (2000) Biorefineries—industrial processes and products. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Kamm B, Gruber PR, Kamm M (2000) Biorefineries—industrial processes and products. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
45.
go back to reference Iqbal S, Davies TE, Morgan DJ, Karim K, Hayward JS, Bartley JK et al (2016) Fischer Tropsch synthesis using cobalt based carbon catalysts. Catal Today 275:35–39CrossRef Iqbal S, Davies TE, Morgan DJ, Karim K, Hayward JS, Bartley JK et al (2016) Fischer Tropsch synthesis using cobalt based carbon catalysts. Catal Today 275:35–39CrossRef
46.
go back to reference Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Cat Sci Technol 4(8):2210–2229CrossRef Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Cat Sci Technol 4(8):2210–2229CrossRef
47.
go back to reference Mahmoudi H, Jahangiri H, Doustdar O, Akbari N, Wood J, Tsolakis A, et al (2020) Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalysts. Fuel Processing Technology 208:106477 Mahmoudi H, Jahangiri H, Doustdar O, Akbari N, Wood J, Tsolakis A, et al (2020) Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalysts. Fuel Processing Technology 208:106477
48.
go back to reference Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 53:1333–1347CrossRef Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 53:1333–1347CrossRef
49.
go back to reference Warnecke R (2000) Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18(6):489–497CrossRef Warnecke R (2000) Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18(6):489–497CrossRef
50.
go back to reference Heidenreich S, Müller M, Foscolo PU (2016) Chap. 2—fundamental concepts in biomass gasification. In: Heidenreich S, Müller M, Foscolo PU (eds) Advanced biomass gasification. Academic Press, New York, pp 4–10CrossRef Heidenreich S, Müller M, Foscolo PU (2016) Chap. 2—fundamental concepts in biomass gasification. In: Heidenreich S, Müller M, Foscolo PU (eds) Advanced biomass gasification. Academic Press, New York, pp 4–10CrossRef
51.
go back to reference Reed TB, Das A (1988) Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation, Golden, COCrossRef Reed TB, Das A (1988) Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation, Golden, COCrossRef
52.
go back to reference Ouadi M, Fivga A, Jahangiri H, Saghir M, Hornung A (2019) A review of the valorization of paper industry wastes by thermochemical conversion. Ind Eng Chem Res 58(35):15914–15929CrossRef Ouadi M, Fivga A, Jahangiri H, Saghir M, Hornung A (2019) A review of the valorization of paper industry wastes by thermochemical conversion. Ind Eng Chem Res 58(35):15914–15929CrossRef
53.
go back to reference Pfeifer C, Rauch R, Hofbauer H (2004) In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res 43(7):1634–1640CrossRef Pfeifer C, Rauch R, Hofbauer H (2004) In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res 43(7):1634–1640CrossRef
54.
go back to reference Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J Anal Appl Pyrolysis 103:328–342CrossRef Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J Anal Appl Pyrolysis 103:328–342CrossRef
55.
go back to reference Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608CrossRef Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608CrossRef
56.
go back to reference Klaas M, Greenhalf C, Ouadi M, Jahangiri H, Hornung A, Briens C, et al (2020) The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results Eng 7:100165 Klaas M, Greenhalf C, Ouadi M, Jahangiri H, Hornung A, Briens C, et al (2020) The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results Eng 7:100165
57.
go back to reference Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94CrossRef Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94CrossRef
58.
go back to reference Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414CrossRef Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414CrossRef
59.
go back to reference Dhyani V, Bhaskar T (2019) Chap. 9—pyrolysis of biomass. In: Pandey A, Larroche C, Dussap C-G, Gnansounou E, Khanal SK, Ricke S (eds) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 2nd edn. Academic Press, New York, pp 217–244CrossRef Dhyani V, Bhaskar T (2019) Chap. 9—pyrolysis of biomass. In: Pandey A, Larroche C, Dussap C-G, Gnansounou E, Khanal SK, Ricke S (eds) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 2nd edn. Academic Press, New York, pp 217–244CrossRef
60.
go back to reference Cong H, Mašek O, Zhao L, Yao Z, Meng H, Hu E et al (2018) Slow pyrolysis performance and energy balance of corn stover in continuous pyrolysis-based poly-generation systems. Energy Fuel 32(3):3743–3750CrossRef Cong H, Mašek O, Zhao L, Yao Z, Meng H, Hu E et al (2018) Slow pyrolysis performance and energy balance of corn stover in continuous pyrolysis-based poly-generation systems. Energy Fuel 32(3):3743–3750CrossRef
61.
go back to reference Crombie K, Mašek O (2014) Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions. Bioresour Technol 162:148–156CrossRef Crombie K, Mašek O (2014) Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions. Bioresour Technol 162:148–156CrossRef
62.
go back to reference Park J, Lee Y, Ryu C, Park YK (2014) Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol 155:63–70CrossRef Park J, Lee Y, Ryu C, Park YK (2014) Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol 155:63–70CrossRef
63.
go back to reference Stamatov V, Honnery D, Soria J (2006) Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species. Renew Energy 31(13):2108–2121CrossRef Stamatov V, Honnery D, Soria J (2006) Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species. Renew Energy 31(13):2108–2121CrossRef
64.
go back to reference Hagner M, Tiilikkala K, Lindqvist I, Niemelä K, Wikberg H, Källi A et al (2018) Performance of liquids from slow pyrolysis and hydrothermal carbonization in plant protection. In: Waste biomass valorization, pp 1–12 Hagner M, Tiilikkala K, Lindqvist I, Niemelä K, Wikberg H, Källi A et al (2018) Performance of liquids from slow pyrolysis and hydrothermal carbonization in plant protection. In: Waste biomass valorization, pp 1–12
65.
go back to reference Carrier M, Hugo T, Gorgens J, Knoetze H (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90(1):18–26CrossRef Carrier M, Hugo T, Gorgens J, Knoetze H (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90(1):18–26CrossRef
66.
go back to reference Aziz AA, Deraman M (2013) Pore structure of carbon granules prepared from slow pyrolysis of oil palm empty fruit bunch fibres. J Oil Palm Res 25(2):216–227 Aziz AA, Deraman M (2013) Pore structure of carbon granules prepared from slow pyrolysis of oil palm empty fruit bunch fibres. J Oil Palm Res 25(2):216–227
67.
go back to reference Moreira R, Orsini RD, Vaz JM, Penteado JC, Spinace EV (2017) Production of biochar, bio-oil and synthesis gas from cashew nut shell by slow pyrolysis. Waste Biomass Valor 8(1):217–224CrossRef Moreira R, Orsini RD, Vaz JM, Penteado JC, Spinace EV (2017) Production of biochar, bio-oil and synthesis gas from cashew nut shell by slow pyrolysis. Waste Biomass Valor 8(1):217–224CrossRef
68.
go back to reference Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef
69.
go back to reference Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34CrossRef
70.
go back to reference van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762 van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762
71.
go back to reference Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC (2013) Biomass torrefaction technology: techno-economic status and future prospects. Energy 62:196–214CrossRef Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC (2013) Biomass torrefaction technology: techno-economic status and future prospects. Energy 62:196–214CrossRef
72.
go back to reference Neumann J, Meyer J, Ouadi M, Apfelbacher A, Binder S, Hornung A (2016) The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag 47:141–148CrossRef Neumann J, Meyer J, Ouadi M, Apfelbacher A, Binder S, Hornung A (2016) The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag 47:141–148CrossRef
73.
go back to reference Hornung A (2013) Intermediate pyrolysis of biomass. Woodhead Publ Ser En 40:172–186 Hornung A (2013) Intermediate pyrolysis of biomass. Woodhead Publ Ser En 40:172–186
74.
go back to reference Ouadi M, Brammer JG, Yang Y, Hornung A, Kay M (2013) The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. J Anal Appl Pyrolysis 102:24–32CrossRef Ouadi M, Brammer JG, Yang Y, Hornung A, Kay M (2013) The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. J Anal Appl Pyrolysis 102:24–32CrossRef
75.
go back to reference Yang Y, Brammer JG, Mahmood ASN, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799CrossRef Yang Y, Brammer JG, Mahmood ASN, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799CrossRef
76.
go back to reference Pattiya A (2018) 1—Fast pyrolysis. In: Rosendahl L (ed) Direct thermochemical liquefaction for energy applications. Woodhead Publishing, Cambridge, pp 3–28CrossRef Pattiya A (2018) 1—Fast pyrolysis. In: Rosendahl L (ed) Direct thermochemical liquefaction for energy applications. Woodhead Publishing, Cambridge, pp 3–28CrossRef
77.
go back to reference Blanco A, Chejne F (2016) Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor. J Anal Appl Pyrolysis 118:105–114CrossRef Blanco A, Chejne F (2016) Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor. J Anal Appl Pyrolysis 118:105–114CrossRef
78.
go back to reference Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6(1):514–538CrossRef Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6(1):514–538CrossRef
79.
go back to reference Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuel 17(2):433–443CrossRef Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuel 17(2):433–443CrossRef
80.
go back to reference Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRef Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRef
81.
go back to reference Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716CrossRef Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716CrossRef
82.
go back to reference Zhang Q, Chang J, Wang TJ, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energ Conver Manage 48(1):87–92CrossRef Zhang Q, Chang J, Wang TJ, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energ Conver Manage 48(1):87–92CrossRef
83.
go back to reference Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept—biothermal valorisation of biomass (BtVB) process. J Sci Ind Res 70(8):664–667 Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept—biothermal valorisation of biomass (BtVB) process. J Sci Ind Res 70(8):664–667
84.
go back to reference Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRef Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRef
85.
go back to reference Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Thermo-chemical behaviour and chemical product formation from polar seaweeds during intermediate pyrolysis. J Anal Appl Pyrolysis 104:131–138CrossRef Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Thermo-chemical behaviour and chemical product formation from polar seaweeds during intermediate pyrolysis. J Anal Appl Pyrolysis 104:131–138CrossRef
86.
go back to reference Ouadi M, Kay M, Brammer J, Hornung A (2012) Waste to power. Tappi J 11(2):55–64CrossRef Ouadi M, Kay M, Brammer J, Hornung A (2012) Waste to power. Tappi J 11(2):55–64CrossRef
87.
go back to reference Hossain AK, Ouadi M, Siddiqui SU, Yang Y, Brammer J, Hornung A et al (2013) Experimental investigation of performance, emission and combustion characteristics of an indirect injection multi-cylinder CI engine fuelled by blends of de-inking sludge pyrolysis oil with biodiesel. Fuel 105:135–142CrossRef Hossain AK, Ouadi M, Siddiqui SU, Yang Y, Brammer J, Hornung A et al (2013) Experimental investigation of performance, emission and combustion characteristics of an indirect injection multi-cylinder CI engine fuelled by blends of de-inking sludge pyrolysis oil with biodiesel. Fuel 105:135–142CrossRef
88.
go back to reference Ghidotti M (2017) Analytical methods for the characterisation of volatile and water-soluble organic compounds in biochar. In: Relationships with thermal stability and seed germination. Alma Ghidotti M (2017) Analytical methods for the characterisation of volatile and water-soluble organic compounds in biochar. In: Relationships with thermal stability and seed germination. Alma
89.
go back to reference Hu X, Gholizadeh M (2019) Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem 39:109–143CrossRef Hu X, Gholizadeh M (2019) Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem 39:109–143CrossRef
90.
go back to reference Chen W, Yang H, Chen Y, Chen X, Fang Y, Chen H (2016) Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J Anal Appl Pyrolysis 120:186–193CrossRef Chen W, Yang H, Chen Y, Chen X, Fang Y, Chen H (2016) Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J Anal Appl Pyrolysis 120:186–193CrossRef
91.
go back to reference Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrolysis 114:100–108CrossRef Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrolysis 114:100–108CrossRef
92.
go back to reference Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181 Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181
93.
go back to reference Hood-Nowotny R, Watzinger A, Wawra A, Soja G (2018) The impact of biochar incorporation on inorganic nitrogen fertilizer plant uptake; an opportunity for carbon sequestration in temperate agriculture. Geosciences 8(11):420CrossRef Hood-Nowotny R, Watzinger A, Wawra A, Soja G (2018) The impact of biochar incorporation on inorganic nitrogen fertilizer plant uptake; an opportunity for carbon sequestration in temperate agriculture. Geosciences 8(11):420CrossRef
94.
go back to reference Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517CrossRef Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517CrossRef
95.
go back to reference Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRef Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRef
96.
go back to reference Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33CrossRef Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33CrossRef
97.
go back to reference Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202CrossRef Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202CrossRef
98.
go back to reference Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74CrossRef Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74CrossRef
99.
go back to reference Lede J, Diebold JP, Peacocke GVC, Piskorz J (1997) The nature and properties of intermediate and unvaporized biomass pyrolysis materials. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 27–42CrossRef Lede J, Diebold JP, Peacocke GVC, Piskorz J (1997) The nature and properties of intermediate and unvaporized biomass pyrolysis materials. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 27–42CrossRef
100.
go back to reference Isahak WNRW, Hisham MWM, Yarmo MA, T-y YH (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16(8):5910–5923CrossRef Isahak WNRW, Hisham MWM, Yarmo MA, T-y YH (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16(8):5910–5923CrossRef
101.
go back to reference Milne T, Agblevor F, Davis M, Deutch S, Johnson D (1997) A review of the chemical composition of fast-pyrolysis oils from biomass. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 409–424CrossRef Milne T, Agblevor F, Davis M, Deutch S, Johnson D (1997) A review of the chemical composition of fast-pyrolysis oils from biomass. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 409–424CrossRef
102.
go back to reference Garcìa-Pérez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energy Fuel 20(1):364–375CrossRef Garcìa-Pérez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energy Fuel 20(1):364–375CrossRef
103.
go back to reference Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550CrossRef Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550CrossRef
104.
go back to reference Hornung U, Schneider D, Hornung A, Tumiatti V, Seifert H (2009) Sequential pyrolysis and catalytic low temperature reforming of wheat straw. J Anal Appl Pyrolysis 85(1):145–150CrossRef Hornung U, Schneider D, Hornung A, Tumiatti V, Seifert H (2009) Sequential pyrolysis and catalytic low temperature reforming of wheat straw. J Anal Appl Pyrolysis 85(1):145–150CrossRef
105.
go back to reference Li H, Xu Q, Xue H, Yan Y (2009) Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renew Energy 34(12):2872–2877CrossRef Li H, Xu Q, Xue H, Yan Y (2009) Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renew Energy 34(12):2872–2877CrossRef
106.
go back to reference Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111CrossRef Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111CrossRef
107.
go back to reference Gust S (1997) Combustion experiences of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer Netherlands, Dordrecht, pp 481–488CrossRef Gust S (1997) Combustion experiences of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer Netherlands, Dordrecht, pp 481–488CrossRef
108.
go back to reference Balat M (2011) An overview of the properties and applications of biomass pyrolysis oils. Energy Sources Pt A Recov Utilization Environ Eff 33(7):674–689CrossRef Balat M (2011) An overview of the properties and applications of biomass pyrolysis oils. Energy Sources Pt A Recov Utilization Environ Eff 33(7):674–689CrossRef
109.
go back to reference Park YK, Yoo ML, Heo HS, Lee HW, Park SH, Jung SC et al (2012) Wild reed of Suncheon Bay: potential bio-energy source. Renew Energy 42:168–172CrossRef Park YK, Yoo ML, Heo HS, Lee HW, Park SH, Jung SC et al (2012) Wild reed of Suncheon Bay: potential bio-energy source. Renew Energy 42:168–172CrossRef
110.
go back to reference Uddin MN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4(21):10467–10490CrossRef Uddin MN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4(21):10467–10490CrossRef
111.
go back to reference Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef
112.
go back to reference Guoxin H, Hao H, Yanhong L (2009) Hydrogen-rich gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy Fuel 23(3):1748–1753CrossRef Guoxin H, Hao H, Yanhong L (2009) Hydrogen-rich gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy Fuel 23(3):1748–1753CrossRef
113.
go back to reference Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci India 87(7):908–916 Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci India 87(7):908–916
114.
go back to reference Hasan MDM, Wang XS, Mourant D, Gunawan R, Yu C, Hu X et al (2017) Grinding pyrolysis of Mallee wood: effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Process Technol 167:215–220CrossRef Hasan MDM, Wang XS, Mourant D, Gunawan R, Yu C, Hu X et al (2017) Grinding pyrolysis of Mallee wood: effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Process Technol 167:215–220CrossRef
115.
go back to reference He M, Xiao B, Liu S, Hu Z, Guo X, Luo S et al (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87(2):181–187CrossRef He M, Xiao B, Liu S, Hu Z, Guo X, Luo S et al (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87(2):181–187CrossRef
116.
go back to reference Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Valorisation of lignocellulosic biomass investigating different pyrolysis temperatures. J Energy Inst 93(5):1960–1969CrossRef Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Valorisation of lignocellulosic biomass investigating different pyrolysis temperatures. J Energy Inst 93(5):1960–1969CrossRef
117.
go back to reference Bashir MA, Jahangiri H, Hornung A, Ouadi M (2021) Deoxygenation of Bio-oil from Calcium-Rich Paper-Mill Waste. Chem Eng Technol 44(1):194–202 Bashir MA, Jahangiri H, Hornung A, Ouadi M (2021) Deoxygenation of Bio-oil from Calcium-Rich Paper-Mill Waste. Chem Eng Technol 44(1):194–202
118.
go back to reference Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview. Int J Energ Res 35(10):835–862CrossRef Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview. Int J Energ Res 35(10):835–862CrossRef
119.
go back to reference Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81(7):843–853CrossRef Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81(7):843–853CrossRef
120.
go back to reference Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35(1):232–242CrossRef Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35(1):232–242CrossRef
121.
go back to reference Zhang L, Hu X, Hu K, Hu C, Zhang Z, Liu Q et al (2018) Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation. J Power Sources 403:137–156CrossRef Zhang L, Hu X, Hu K, Hu C, Zhang Z, Liu Q et al (2018) Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation. J Power Sources 403:137–156CrossRef
122.
go back to reference Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817CrossRef Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817CrossRef
123.
go back to reference Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250CrossRef Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250CrossRef
124.
go back to reference Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16(7):5101–5109CrossRef Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16(7):5101–5109CrossRef
125.
go back to reference Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef
126.
go back to reference Roy C, Pakdel H, Brouillard D (1990) The role of extractives during vacuum pyrolysis of wood. J Appl Polym Sci 41(1–2):337–348CrossRef Roy C, Pakdel H, Brouillard D (1990) The role of extractives during vacuum pyrolysis of wood. J Appl Polym Sci 41(1–2):337–348CrossRef
127.
go back to reference Kallioinen A, Vaari A, Rättö M, Konn J, Siika-aho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103(1):67–76CrossRef Kallioinen A, Vaari A, Rättö M, Konn J, Siika-aho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103(1):67–76CrossRef
128.
go back to reference Scott DS, Paterson L, Piskorz J, Radlein D (2001) Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. J Anal Appl Pyrolysis 57(2):169–176CrossRef Scott DS, Paterson L, Piskorz J, Radlein D (2001) Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. J Anal Appl Pyrolysis 57(2):169–176CrossRef
129.
go back to reference Santos J, Ouadi M, Jahangiri H, Hornung A (2019) Integrated intermediate catalytic pyrolysis of wheat husk. Food Bioprod Process 114:23–30CrossRef Santos J, Ouadi M, Jahangiri H, Hornung A (2019) Integrated intermediate catalytic pyrolysis of wheat husk. Food Bioprod Process 114:23–30CrossRef
130.
go back to reference Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM et al (2013) Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel 103:247–257CrossRef Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM et al (2013) Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel 103:247–257CrossRef
131.
go back to reference Fivga A, Jahangiri H, Bashir MA, Majewski AJ, Hornung A, Ouadi M (2020) Demonstration of catalytic properties of de-inking sludge char as a carbon based sacrificial catalyst. J Anal Appl Pyrolysis 146:104773CrossRef Fivga A, Jahangiri H, Bashir MA, Majewski AJ, Hornung A, Ouadi M (2020) Demonstration of catalytic properties of de-inking sludge char as a carbon based sacrificial catalyst. J Anal Appl Pyrolysis 146:104773CrossRef
132.
go back to reference Santos J, Jahangiri H, Bashir MA, Hornung A, Ouadi M (2020) The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustain Chem Eng 8(50):18420–32 Santos J, Jahangiri H, Bashir MA, Hornung A, Ouadi M (2020) The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustain Chem Eng 8(50):18420–32
133.
go back to reference Hornung A (2014) Transformation of biomass theory to practice preface. In: Transformation of biomass: theory to practice, pp Xvii–Xviii Hornung A (2014) Transformation of biomass theory to practice preface. In: Transformation of biomass: theory to practice, pp Xvii–Xviii
134.
go back to reference Neumann J, Binder S, Apfelbacher A, Gasson JR, Ramírez García P, Hornung A (2015) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142CrossRef Neumann J, Binder S, Apfelbacher A, Gasson JR, Ramírez García P, Hornung A (2015) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142CrossRef
135.
go back to reference Ouadi M, Bashir MA, Speranza LG, Jahangiri H, Hornung A (2019) Food and market waste—a pathway to sustainable fuels and waste valorization. Energy Fuel 33(10):9843–9850CrossRef Ouadi M, Bashir MA, Speranza LG, Jahangiri H, Hornung A (2019) Food and market waste—a pathway to sustainable fuels and waste valorization. Energy Fuel 33(10):9843–9850CrossRef
136.
go back to reference Neumann J, Jager N, Apfelbacher A, Daschner R, Binder S, Hornung A (2016) Upgraded biofuel from residue biomass by thermo-catalytic reforming and hydrodeoxygenation. Biomass Bioenergy 89:91–97CrossRef Neumann J, Jager N, Apfelbacher A, Daschner R, Binder S, Hornung A (2016) Upgraded biofuel from residue biomass by thermo-catalytic reforming and hydrodeoxygenation. Biomass Bioenergy 89:91–97CrossRef
137.
go back to reference Ouadi M, Greenhalf C, Jaeger N, Speranza LG, Hornung A (2018) Thermo-catalytic reforming of co-form (R) rejects (waste cleansing wipes). J Anal Appl Pyrolysis 132:33–39CrossRef Ouadi M, Greenhalf C, Jaeger N, Speranza LG, Hornung A (2018) Thermo-catalytic reforming of co-form (R) rejects (waste cleansing wipes). J Anal Appl Pyrolysis 132:33–39CrossRef
138.
go back to reference Kirby ME, Hornung A, Ouadi M, Theodorou MK (2017) The role of thermo-catalytic reforming for energy recovery from food and drink supply chain wastes. Energy Procedia 123:15–21CrossRef Kirby ME, Hornung A, Ouadi M, Theodorou MK (2017) The role of thermo-catalytic reforming for energy recovery from food and drink supply chain wastes. Energy Procedia 123:15–21CrossRef
139.
go back to reference Ahmad E, Jager N, Apfelbacher A, Daschner R, Hornung A, Pant KK (2018) Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Process Technol 171:277–286CrossRef Ahmad E, Jager N, Apfelbacher A, Daschner R, Hornung A, Pant KK (2018) Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Process Technol 171:277–286CrossRef
140.
go back to reference Ouadi M, Jaeger N, Greenhalf C, Santos J, Conti R, Hornung A (2017) Thermo-catalytic reforming of municipal solid waste. Waste Manag 68:198–206CrossRef Ouadi M, Jaeger N, Greenhalf C, Santos J, Conti R, Hornung A (2017) Thermo-catalytic reforming of municipal solid waste. Waste Manag 68:198–206CrossRef
141.
go back to reference Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24:66–72CrossRef Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24:66–72CrossRef
142.
go back to reference Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energ Environ Sci 2(1):68–80CrossRef Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energ Environ Sci 2(1):68–80CrossRef
143.
go back to reference Conti R, Jäger N, Neumann J, Apfelbacher A, Daschner R, Hornung A (2017) Thermocatalytic reforming of biomass waste streams. Energ Technol 5(1):104–110CrossRef Conti R, Jäger N, Neumann J, Apfelbacher A, Daschner R, Hornung A (2017) Thermocatalytic reforming of biomass waste streams. Energ Technol 5(1):104–110CrossRef
144.
go back to reference Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM (2011) Catalytic fast pyrolysis of White oak wood in a bubbling fluidized bed. Energy Fuel 25(11):5444–5451CrossRef Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM (2011) Catalytic fast pyrolysis of White oak wood in a bubbling fluidized bed. Energy Fuel 25(11):5444–5451CrossRef
145.
go back to reference Jager N, Conti R, Neumann J, Apfelbacher A, Daschner R, Binder S et al (2016) Thermo-catalytic reforming of woody biomass. Energy Fuel 30(10):7923–7929CrossRef Jager N, Conti R, Neumann J, Apfelbacher A, Daschner R, Binder S et al (2016) Thermo-catalytic reforming of woody biomass. Energy Fuel 30(10):7923–7929CrossRef
146.
go back to reference Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Thermochemical conversion of agricultural wastes applying different reforming temperatures. Fuel Process Technol 203:106402CrossRef Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Thermochemical conversion of agricultural wastes applying different reforming temperatures. Fuel Process Technol 203:106402CrossRef
147.
go back to reference Guo C, Rao KTV, Yuan Z, He S, Rohani S, Xu C (2018) Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chem Eng Sci 178:248–259CrossRef Guo C, Rao KTV, Yuan Z, He S, Rohani S, Xu C (2018) Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chem Eng Sci 178:248–259CrossRef
148.
go back to reference Carriel Schmitt C, Gagliardi Reolon MB, Zimmermann M, Raffelt K, Grunwaldt J-D, Dahmen N (2018) Synthesis and regeneration of nickel-based catalysts for hydrodeoxygenation of beech wood fast pyrolysis bio-oil. Catalysts 8(10):449CrossRef Carriel Schmitt C, Gagliardi Reolon MB, Zimmermann M, Raffelt K, Grunwaldt J-D, Dahmen N (2018) Synthesis and regeneration of nickel-based catalysts for hydrodeoxygenation of beech wood fast pyrolysis bio-oil. Catalysts 8(10):449CrossRef
149.
go back to reference Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 1: emulsion production. Biomass Bioenergy 25(1):85–99CrossRef Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 1: emulsion production. Biomass Bioenergy 25(1):85–99CrossRef
150.
go back to reference Bridgwater AV (2012) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain 31(2):261–268CrossRef Bridgwater AV (2012) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain 31(2):261–268CrossRef
151.
go back to reference Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 11(5):1081–1091CrossRef Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 11(5):1081–1091CrossRef
152.
go back to reference Carlson TR, Vispute TR, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400CrossRef Carlson TR, Vispute TR, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400CrossRef
153.
go back to reference Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81(1):72–79CrossRef Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81(1):72–79CrossRef
154.
go back to reference Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89(1):244–253CrossRef Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89(1):244–253CrossRef
155.
go back to reference Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252CrossRef Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252CrossRef
156.
go back to reference Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF et al (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279(2):257–268CrossRef Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF et al (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279(2):257–268CrossRef
157.
go back to reference Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110CrossRef Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110CrossRef
158.
go back to reference Duman G, Pala M, Ucar S, Yanik J (2013) Two-step pyrolysis of safflower oil cake. J Anal Appl Pyrolysis 103:352–361CrossRef Duman G, Pala M, Ucar S, Yanik J (2013) Two-step pyrolysis of safflower oil cake. J Anal Appl Pyrolysis 103:352–361CrossRef
159.
go back to reference Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L et al (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599CrossRef Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L et al (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599CrossRef
160.
go back to reference Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100(3):1428–1434CrossRef Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100(3):1428–1434CrossRef
161.
go back to reference Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou EF, Lappas AA, Triantafyllidis KS (2011) Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal Today 167(1):37–45CrossRef Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou EF, Lappas AA, Triantafyllidis KS (2011) Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal Today 167(1):37–45CrossRef
162.
go back to reference Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25(6):493–513CrossRef Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25(6):493–513CrossRef
163.
go back to reference Engtrakul C, Mukarakate C, Starace AK, Magrini KA, Rogers AK, Yung MM (2016) Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal Today 269:175–181CrossRef Engtrakul C, Mukarakate C, Starace AK, Magrini KA, Rogers AK, Yung MM (2016) Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal Today 269:175–181CrossRef
164.
go back to reference Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S et al (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal Gen 470:115–122CrossRef Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S et al (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal Gen 470:115–122CrossRef
165.
go back to reference Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134(1):51–57CrossRef Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134(1):51–57CrossRef
166.
go back to reference Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A et al (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96(1):93–101CrossRef Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A et al (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96(1):93–101CrossRef
167.
go back to reference French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32CrossRef French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32CrossRef
168.
go back to reference Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605CrossRef Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605CrossRef
169.
go back to reference Yildiz G, Pronk M, Djokic M, van Geem KM, Ronsse F, van Duren R et al (2013) Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. J Anal Appl Pyrolysis 103:343–351CrossRef Yildiz G, Pronk M, Djokic M, van Geem KM, Ronsse F, van Duren R et al (2013) Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. J Anal Appl Pyrolysis 103:343–351CrossRef
170.
go back to reference Gholizadeh M, Gunawan R, Hu X, de Miguel Mercader F, Westerhof R, Chaitwat W et al (2016) Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Process Technol 148:175–183CrossRef Gholizadeh M, Gunawan R, Hu X, de Miguel Mercader F, Westerhof R, Chaitwat W et al (2016) Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Process Technol 148:175–183CrossRef
171.
go back to reference Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal Gen 423–424:154–161CrossRef Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal Gen 423–424:154–161CrossRef
172.
go back to reference Lappas AA, Kalogiannis KG, Iliopoulou EF, Triantafyllidis KS, Stefanidis SD (2016) Catalytic pyrolysis of biomass for transportation fuels. advances in bioenergy: the sustainability challenge, pp 45–56 Lappas AA, Kalogiannis KG, Iliopoulou EF, Triantafyllidis KS, Stefanidis SD (2016) Catalytic pyrolysis of biomass for transportation fuels. advances in bioenergy: the sustainability challenge, pp 45–56
173.
go back to reference Wang K, Johnston PA, Brown RC (2014) Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour Technol 173:124–131CrossRef Wang K, Johnston PA, Brown RC (2014) Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour Technol 173:124–131CrossRef
174.
go back to reference Wang SR, Dai GX, Yang HP, Luo ZY (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust 62:33–86CrossRef Wang SR, Dai GX, Yang HP, Luo ZY (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust 62:33–86CrossRef
175.
go back to reference Pindoria RV, Megaritis A, Herod AA, Kandiyoti R (1998) A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. Fuel 77(15):1715–1726CrossRef Pindoria RV, Megaritis A, Herod AA, Kandiyoti R (1998) A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. Fuel 77(15):1715–1726CrossRef
176.
go back to reference Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967CrossRef Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967CrossRef
177.
go back to reference Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43(12):1549–1551CrossRef Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43(12):1549–1551CrossRef
178.
go back to reference Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132CrossRef Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132CrossRef
179.
go back to reference ADd O, AFd S, Pimentel MF, Pacheco JGA, Pereira CF, Larrechi MS (2017) Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production. Spectrochim Acta A Mol Biomol Spectrosc 170:56–64CrossRef ADd O, AFd S, Pimentel MF, Pacheco JGA, Pereira CF, Larrechi MS (2017) Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production. Spectrochim Acta A Mol Biomol Spectrosc 170:56–64CrossRef
180.
go back to reference Juan JC, Zhang JC, Yarmo MA (2008) Efficient esterification of fatty acids with alcohols catalyzed by Zr(SO(4))(2) center dot 4H(2)O under solvent-free condition. Catal Lett 126(3–4):319–324CrossRef Juan JC, Zhang JC, Yarmo MA (2008) Efficient esterification of fatty acids with alcohols catalyzed by Zr(SO(4))(2) center dot 4H(2)O under solvent-free condition. Catal Lett 126(3–4):319–324CrossRef
181.
go back to reference Park YM, Chung SH, Eom HJ, Lee JS, Lee KY (2010) Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresour Technol 101(17):6589–6593CrossRef Park YM, Chung SH, Eom HJ, Lee JS, Lee KY (2010) Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresour Technol 101(17):6589–6593CrossRef
182.
go back to reference Ozbay N, Oktar N, Tapan NA (2008) Esterification of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins. Fuel 87(10–11):1789–1798CrossRef Ozbay N, Oktar N, Tapan NA (2008) Esterification of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins. Fuel 87(10–11):1789–1798CrossRef
183.
go back to reference Costa AA, Braga PRS, de Macedo JL, Dias JA, Dias SCL (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Micropor Mesopor Mat 147(1):142–148CrossRef Costa AA, Braga PRS, de Macedo JL, Dias JA, Dias SCL (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Micropor Mesopor Mat 147(1):142–148CrossRef
184.
go back to reference Brahmkhatri V, Patel A (2011) 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Appl Catal A Gen 403(1–2):161–172CrossRef Brahmkhatri V, Patel A (2011) 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Appl Catal A Gen 403(1–2):161–172CrossRef
185.
go back to reference Mantri K, Nakamura R, Miyata Y, Komura K, Sugi Y (2007) Multi-valent metal salt hydrates as catalysts for the esterification of fatty acids and alcohols. Mater Sci Forum 539–543:2317–2322CrossRef Mantri K, Nakamura R, Miyata Y, Komura K, Sugi Y (2007) Multi-valent metal salt hydrates as catalysts for the esterification of fatty acids and alcohols. Mater Sci Forum 539–543:2317–2322CrossRef
186.
go back to reference Xie W, Zhao L (2014) Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil. Energ Conver Manage 79:34–42CrossRef Xie W, Zhao L (2014) Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil. Energ Conver Manage 79:34–42CrossRef
187.
go back to reference Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916CrossRef Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916CrossRef
188.
go back to reference Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K (2009) Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chem Eng J 145(3):468–474CrossRef Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K (2009) Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chem Eng J 145(3):468–474CrossRef
189.
go back to reference Xie W, Liu Y, Chun H (2012) Biodiesel preparation from soybean oil by using a heterogeneous CaxMg2 − xO2 catalyst. Catal Lett 142(3):352–359 Xie W, Liu Y, Chun H (2012) Biodiesel preparation from soybean oil by using a heterogeneous CaxMg2 − xO2 catalyst. Catal Lett 142(3):352–359
190.
go back to reference James OO, Maity S, Mesubi MA, Usman LA, Ajanaku KO, Siyanbola TO et al (2012) A review on conversion of triglycerides to on-specification diesel fuels without additional inputs. Int J Energ Res 36(6):691–702CrossRef James OO, Maity S, Mesubi MA, Usman LA, Ajanaku KO, Siyanbola TO et al (2012) A review on conversion of triglycerides to on-specification diesel fuels without additional inputs. Int J Energ Res 36(6):691–702CrossRef
191.
go back to reference Parida K, Mishra HK (1999) Catalytic ketonisation of acetic acid over modified zirconia: 1. Effect of alkali-metal cations as promoter. J Mol Catal A Chem 139(1):73–80CrossRef Parida K, Mishra HK (1999) Catalytic ketonisation of acetic acid over modified zirconia: 1. Effect of alkali-metal cations as promoter. J Mol Catal A Chem 139(1):73–80CrossRef
192.
go back to reference Bayahia H, Kozhevnikova EF, Kozhevnikov IV (2015) Ketonisation of carboxylic acids over Zn-Cr oxide in the gas phase. Appl Catal Environ 165:253–259CrossRef Bayahia H, Kozhevnikova EF, Kozhevnikov IV (2015) Ketonisation of carboxylic acids over Zn-Cr oxide in the gas phase. Appl Catal Environ 165:253–259CrossRef
193.
go back to reference Iliopoulou EF (2010) Review of C-C coupling reactions in biomass exploitation processes. Curr Org Synth 7(6):587–598CrossRef Iliopoulou EF (2010) Review of C-C coupling reactions in biomass exploitation processes. Curr Org Synth 7(6):587–598CrossRef
194.
go back to reference Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over Ceria-Zirconia as biomass-upgrading processes. Ind Eng Chem Res 49(13):6027–6033CrossRef Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over Ceria-Zirconia as biomass-upgrading processes. Ind Eng Chem Res 49(13):6027–6033CrossRef
195.
go back to reference Aguado R, Olazar M, Jose MJS, Aguirre G, Bilbao J (2000) Pyrolysis of sawdust in a conical spouted bed reactor. Yields and product composition. Ind Eng Chem Res 39(6):1925–1933CrossRef Aguado R, Olazar M, Jose MJS, Aguirre G, Bilbao J (2000) Pyrolysis of sawdust in a conical spouted bed reactor. Yields and product composition. Ind Eng Chem Res 39(6):1925–1933CrossRef
196.
go back to reference Nie L, Resasco DE (2012) Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Appl Catal A Gen 447:14–21CrossRef Nie L, Resasco DE (2012) Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Appl Catal A Gen 447:14–21CrossRef
197.
go back to reference Zapata PA, Faria J, Ruiz MP, Resasco DE (2012) Condensation/hydrogenation of biomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts. Top Catal 55(1–2):38–52CrossRef Zapata PA, Faria J, Ruiz MP, Resasco DE (2012) Condensation/hydrogenation of biomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts. Top Catal 55(1–2):38–52CrossRef
198.
go back to reference Gliński M, Kijeński J (2000) Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Appl Catal Gen 190(1–2):87–91CrossRef Gliński M, Kijeński J (2000) Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Appl Catal Gen 190(1–2):87–91CrossRef
199.
go back to reference Okumura K, Iwasawa Y (1996) Zirconium oxides dispersed on silica derived from Cp2ZrCl2, [(i-PrCp)2ZrH(μ-H)]2, and Zr(OEt)4 characterized by x-ray absorption fine structure and catalytic ketonization of acetic acid. J Catal 164(2):440–448CrossRef Okumura K, Iwasawa Y (1996) Zirconium oxides dispersed on silica derived from Cp2ZrCl2, [(i-PrCp)2ZrH(μ-H)]2, and Zr(OEt)4 characterized by x-ray absorption fine structure and catalytic ketonization of acetic acid. J Catal 164(2):440–448CrossRef
200.
go back to reference Gliński M, Kijeński J (2000) Catalytic ketonization of carboxylic acids synthesis of saturated and unsaturated ketones. React Kinet Catal L 69(1):123–128CrossRef Gliński M, Kijeński J (2000) Catalytic ketonization of carboxylic acids synthesis of saturated and unsaturated ketones. React Kinet Catal L 69(1):123–128CrossRef
201.
go back to reference Parida KM, Samal A, Das NN (1998) Catalytic ketonization of monocarboxylic acids over Indian Ocean manganese nodules. Appl Catal Gen 166(1):201–205CrossRef Parida KM, Samal A, Das NN (1998) Catalytic ketonization of monocarboxylic acids over Indian Ocean manganese nodules. Appl Catal Gen 166(1):201–205CrossRef
202.
go back to reference Randery SD, Warren JS, Dooley KM (2002) Cerium oxide-based catalysts for production of ketones by acid condensation. Appl Catal A Gen 226(1–2):265–280CrossRef Randery SD, Warren JS, Dooley KM (2002) Cerium oxide-based catalysts for production of ketones by acid condensation. Appl Catal A Gen 226(1–2):265–280CrossRef
203.
go back to reference Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A Gen 320:122–133CrossRef Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A Gen 320:122–133CrossRef
204.
go back to reference Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A Chem 227(1–2):231–239CrossRef Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A Chem 227(1–2):231–239CrossRef
205.
go back to reference Pestman R, Koster RM, vanDuijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides 0.2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168(2):265–272CrossRef Pestman R, Koster RM, vanDuijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides 0.2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168(2):265–272CrossRef
206.
go back to reference Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 17(3):768–774CrossRef Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 17(3):768–774CrossRef
207.
go back to reference Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloid Surf A 190(3):261–274CrossRef Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloid Surf A 190(3):261–274CrossRef
208.
go back to reference Martin D, Duprez D (1997) Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. J Mol Catal A Chem 118(1):113–128CrossRef Martin D, Duprez D (1997) Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. J Mol Catal A Chem 118(1):113–128CrossRef
209.
go back to reference Jahangiri H, Osatiashtiani A, Bennett JA, Isaacs MA, Gu S, Lee AF et al (2018) Zirconia catalysed acetic acid ketonisation for pre-treatment of biomass fast pyrolysis vapours. Cat Sci Technol 8(4):1134–1141CrossRef Jahangiri H, Osatiashtiani A, Bennett JA, Isaacs MA, Gu S, Lee AF et al (2018) Zirconia catalysed acetic acid ketonisation for pre-treatment of biomass fast pyrolysis vapours. Cat Sci Technol 8(4):1134–1141CrossRef
210.
go back to reference Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473CrossRef Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473CrossRef
211.
go back to reference Vervecken M, Servotte Y, Wydoodt M, Jacobs L, Martens JA, Jacobs PA (1986) Zeolite-induced selectivity in the conversion of the lower aliphatic carboxylic acids. In: Setton R (ed) chemical reactions in organic and inorganic constrained systems. Springer, Dordrecht, pp 95–114CrossRef Vervecken M, Servotte Y, Wydoodt M, Jacobs L, Martens JA, Jacobs PA (1986) Zeolite-induced selectivity in the conversion of the lower aliphatic carboxylic acids. In: Setton R (ed) chemical reactions in organic and inorganic constrained systems. Springer, Dordrecht, pp 95–114CrossRef
212.
go back to reference Jahangiri H, Osatiashtiani A, Ouadi M, Hornung A, Lee AF, Wilson K (2019) Ga/HZSM-5 catalysed acetic acid ketonisation for upgrading of biomass pyrolysis vapours. Catalysts 9(10):841CrossRef Jahangiri H, Osatiashtiani A, Ouadi M, Hornung A, Lee AF, Wilson K (2019) Ga/HZSM-5 catalysed acetic acid ketonisation for upgrading of biomass pyrolysis vapours. Catalysts 9(10):841CrossRef
213.
go back to reference Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54CrossRef Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54CrossRef
214.
go back to reference Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32 Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32
215.
go back to reference Panagiotopoulou P, Vlachos DG (2014) Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl Catal A Gen 480:17–24CrossRef Panagiotopoulou P, Vlachos DG (2014) Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl Catal A Gen 480:17–24CrossRef
216.
go back to reference Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423CrossRef Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423CrossRef
217.
go back to reference Weingarten R, Cho J, Conner WC, Huber GW (2010) Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem 12(8):1423–1429CrossRef Weingarten R, Cho J, Conner WC, Huber GW (2010) Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem 12(8):1423–1429CrossRef
218.
go back to reference de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178CrossRef de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178CrossRef
219.
go back to reference Qi XH, Watanabe M, Aida TM, Smith RL (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10(7):799–805CrossRef Qi XH, Watanabe M, Aida TM, Smith RL (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10(7):799–805CrossRef
220.
go back to reference Yan K, Wu GS, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676CrossRef Yan K, Wu GS, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676CrossRef
221.
go back to reference Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22(4):295–304CrossRef Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22(4):295–304CrossRef
222.
go back to reference Vlachos DG, Caratzoulas S (2010) The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 65(1):18–29CrossRef Vlachos DG, Caratzoulas S (2010) The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 65(1):18–29CrossRef
223.
go back to reference Sako T, Sugeta T, Nakazawa N, Otake K, Sato M, Ishihara K et al (1995) High-pressure vapor-liquid and vapor-liquid-liquid equilibria for systems containing supercritical carbon-dioxide, water and furfural. Fluid Phase Equilibr 108(1–2):293–303CrossRef Sako T, Sugeta T, Nakazawa N, Otake K, Sato M, Ishihara K et al (1995) High-pressure vapor-liquid and vapor-liquid-liquid equilibria for systems containing supercritical carbon-dioxide, water and furfural. Fluid Phase Equilibr 108(1–2):293–303CrossRef
224.
go back to reference Xiong K, Wan WM, Chen JGG (2016) Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf Sci 652:91–97CrossRef Xiong K, Wan WM, Chen JGG (2016) Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf Sci 652:91–97CrossRef
225.
go back to reference Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfuralu—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166CrossRef Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfuralu—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166CrossRef
226.
go back to reference Dong F, Zhu YL, Zheng HY, Zhu YF, Li XQ, Li YW (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Chem 398:140–148CrossRef Dong F, Zhu YL, Zheng HY, Zhu YF, Li XQ, Li YW (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Chem 398:140–148CrossRef
227.
go back to reference Ordomsky VV, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Appl Catal A Gen 451:6–13CrossRef Ordomsky VV, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Appl Catal A Gen 451:6–13CrossRef
228.
go back to reference Srivastava S, Jadeja GC, Parikh J (2016) A versatile bi-metallic copper-cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran. RSC Adv 6(2):1649–1658CrossRef Srivastava S, Jadeja GC, Parikh J (2016) A versatile bi-metallic copper-cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran. RSC Adv 6(2):1649–1658CrossRef
229.
go back to reference De S, Saha B, Luque R (2015) Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol 178:108–118CrossRef De S, Saha B, Luque R (2015) Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol 178:108–118CrossRef
230.
go back to reference Ren H, Yu WT, Salciccioli M, Chen Y, Huang YL, Xiong K et al (2013) Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. ChemSusChem 6(5):798–801CrossRef Ren H, Yu WT, Salciccioli M, Chen Y, Huang YL, Xiong K et al (2013) Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. ChemSusChem 6(5):798–801CrossRef
231.
go back to reference Cheng SY, Wei L, Julson J, Rabnawaz M (2017) Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. Energ Conver Manage 150:331–342CrossRef Cheng SY, Wei L, Julson J, Rabnawaz M (2017) Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. Energ Conver Manage 150:331–342CrossRef
232.
go back to reference Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2018) Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: a review. J Anal Appl Pyrolysis 133:117–127CrossRef Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2018) Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: a review. J Anal Appl Pyrolysis 133:117–127CrossRef
233.
go back to reference Yang T, Shi L, Li R, Li B, Kai X (2019) Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum. Fuel Process Technol 184:65–72CrossRef Yang T, Shi L, Li R, Li B, Kai X (2019) Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum. Fuel Process Technol 184:65–72CrossRef
234.
go back to reference Muradov N (2017) Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int J Hydrogen Energy 42(20):14058–14088CrossRef Muradov N (2017) Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int J Hydrogen Energy 42(20):14058–14088CrossRef
235.
go back to reference Duan P, Savage PE (2011) Catalytic hydrotreatment of crude algal bio-oil in supercritical water. Appl Catal Environ 104(1):136–143CrossRef Duan P, Savage PE (2011) Catalytic hydrotreatment of crude algal bio-oil in supercritical water. Appl Catal Environ 104(1):136–143CrossRef
236.
go back to reference Gandarias I, Requies J, Arias PL, Armbruster U, Martin A (2012) Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts. J Catal 290:79–89CrossRef Gandarias I, Requies J, Arias PL, Armbruster U, Martin A (2012) Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts. J Catal 290:79–89CrossRef
237.
go back to reference Chia M, Dumesic JA (2011) Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to gamma-valerolactone over metal oxide catalysts. Chem Commun 47(44):12233–12235CrossRef Chia M, Dumesic JA (2011) Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to gamma-valerolactone over metal oxide catalysts. Chem Commun 47(44):12233–12235CrossRef
238.
go back to reference Jae J, Zheng WQ, Lobo RF, Vlachos DG (2013) Production of Dimethylfuran from Hydroxymethylfurfural through catalytic transfer hydrogenation with Ruthenium supported on carbon. ChemSusChem 6(7):1158–1162CrossRef Jae J, Zheng WQ, Lobo RF, Vlachos DG (2013) Production of Dimethylfuran from Hydroxymethylfurfural through catalytic transfer hydrogenation with Ruthenium supported on carbon. ChemSusChem 6(7):1158–1162CrossRef
239.
go back to reference Zheng H-Y, Zhu Y-L, Huang L, Zeng Z-Y, Wan H-J, Li Y-W (2008) Study on Cu–Mn–Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process. Cat Com 9(3):342–348CrossRef Zheng H-Y, Zhu Y-L, Huang L, Zeng Z-Y, Wan H-J, Li Y-W (2008) Study on Cu–Mn–Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process. Cat Com 9(3):342–348CrossRef
240.
go back to reference Yang J, Zheng H-Y, Zhu Y-L, Zhao G-W, Zhang C-H, Teng B-T et al (2004) Effects of calcination temperature on performance of Cu–Zn–Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation. Cat Com 5(9):505–510CrossRef Yang J, Zheng H-Y, Zhu Y-L, Zhao G-W, Zhang C-H, Teng B-T et al (2004) Effects of calcination temperature on performance of Cu–Zn–Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation. Cat Com 5(9):505–510CrossRef
241.
go back to reference Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668CrossRef Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668CrossRef
242.
go back to reference Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of Furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett 141(6):784–791CrossRef Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of Furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett 141(6):784–791CrossRef
243.
go back to reference Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186CrossRef Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186CrossRef
244.
go back to reference Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100(24):6537–6542CrossRef Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100(24):6537–6542CrossRef
245.
go back to reference Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chim 7(2):65–90CrossRef Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chim 7(2):65–90CrossRef
246.
go back to reference Qazanfarzadeh Z, Kadivar M (2016) Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int J Biol Macromol 91:1134–1140CrossRef Qazanfarzadeh Z, Kadivar M (2016) Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int J Biol Macromol 91:1134–1140CrossRef
247.
go back to reference Skiba EA, Budaeva VV, Baibakova OV, Zolotukhin VN, Sakovich GV (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125CrossRef Skiba EA, Budaeva VV, Baibakova OV, Zolotukhin VN, Sakovich GV (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125CrossRef
248.
go back to reference Lawford HG, Rousseau JD, Tolan JS (2001) Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Appl Biochem Biotechnol 91(3):133–146CrossRef Lawford HG, Rousseau JD, Tolan JS (2001) Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Appl Biochem Biotechnol 91(3):133–146CrossRef
249.
go back to reference Valdebenito F, Pereira M, Ciudad G, Azocar L, Briones R, Chinga-Carrasco G (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crop Prod 95:528–534CrossRef Valdebenito F, Pereira M, Ciudad G, Azocar L, Briones R, Chinga-Carrasco G (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crop Prod 95:528–534CrossRef
250.
go back to reference Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717CrossRef Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717CrossRef
251.
go back to reference Chauhan MK, Varun, Chaudhary S, Kumar S, Samar (2011) Life cycle assessment of sugar industry: a review. Renew Sustain Energy Rev 15(7):3445–3453CrossRef Chauhan MK, Varun, Chaudhary S, Kumar S, Samar (2011) Life cycle assessment of sugar industry: a review. Renew Sustain Energy Rev 15(7):3445–3453CrossRef
252.
go back to reference Jain A, Wei YZ, Tietje A (2016) Biochemical conversion of sugarcane bagasse into bioproducts. Biomass Bioenergy 93:227–242CrossRef Jain A, Wei YZ, Tietje A (2016) Biochemical conversion of sugarcane bagasse into bioproducts. Biomass Bioenergy 93:227–242CrossRef
253.
go back to reference Rocha GJD, Nascimento VM, Goncalves AR, Silva VFN, Martin C (2015) Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind Crop Prod 64:52–58CrossRef Rocha GJD, Nascimento VM, Goncalves AR, Silva VFN, Martin C (2015) Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind Crop Prod 64:52–58CrossRef
254.
go back to reference Chandel AK, Antunes FAF, Freitas WLC, da Silva SS (2013) Sequential acid-base pretreatment of sugarcane bagasse: a facile method for the sugars recovery after enzymatic hydrolysis. J Bioprocess Eng Biorefin 2(1):11–19CrossRef Chandel AK, Antunes FAF, Freitas WLC, da Silva SS (2013) Sequential acid-base pretreatment of sugarcane bagasse: a facile method for the sugars recovery after enzymatic hydrolysis. J Bioprocess Eng Biorefin 2(1):11–19CrossRef
255.
go back to reference Maryana R, Oktaviani K, Tanifuji K, Ohi H (2014) Comparison between acid sulfite and soda-AQ delignification methods for effective bio-ethanol production from sugarcane bagasse and oil palm empty fruit bunch. In: 2014 Pan Pac Conf TAPPI; May 28; Taiwan, pp E46–E52 Maryana R, Oktaviani K, Tanifuji K, Ohi H (2014) Comparison between acid sulfite and soda-AQ delignification methods for effective bio-ethanol production from sugarcane bagasse and oil palm empty fruit bunch. In: 2014 Pan Pac Conf TAPPI; May 28; Taiwan, pp E46–E52
256.
go back to reference Ramos LP, da Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202CrossRef Ramos LP, da Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202CrossRef
257.
go back to reference Al Arni S (2018) Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew Energy 124:197–201CrossRef Al Arni S (2018) Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew Energy 124:197–201CrossRef
Metadata
Title
Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals
Authors
Hessam Jahangiri
João Santos
Andreas Hornung
Miloud Ouadi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_1