Skip to main content
Top
Published in: Journal of Materials Science 9/2018

16-01-2018 | Metals

Thermodynamic assessment of Ag–Cu–In

Authors: Christopher P. Muzzillo, Tim Anderson

Published in: Journal of Materials Science | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Ag–Cu–In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag–Cu–In was assessed and a Calphad model was developed. Binary Ag–Cu and Cu–In parameters were taken from previous assessments, while Ag–In was re-assessed. Structure-based models were employed for β-bcc(A2)-Ag3In, γ-Ag9In4, and AgIn2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag–In. Ternary Ag–Cu–In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag–Cu–In assessment, fit was improved while fewer parameters were used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Woychik C, Massalski T (1988) Phase stability relationships and glass formation in the system Cu–Ag–In. Metall Mater Trans A 19:13–21 Woychik C, Massalski T (1988) Phase stability relationships and glass formation in the system Cu–Ag–In. Metall Mater Trans A 19:13–21
2.
go back to reference Wierzbicka-Miernik A (2007) Własności termodynamiczne ciekłych stopów Ag-Cu-In do potencjalnych zastosowań na luty bezołowiowe. Inz Mat 28:889–897 Wierzbicka-Miernik A (2007) Własności termodynamiczne ciekłych stopów Ag-Cu-In do potencjalnych zastosowań na luty bezołowiowe. Inz Mat 28:889–897
3.
go back to reference D’Silva TL (1980) Partially amorphous silver-copper-indium brazing foil, in, GTE Sylvania Products, Inc., Stamford, CT, United States D’Silva TL (1980) Partially amorphous silver-copper-indium brazing foil, in, GTE Sylvania Products, Inc., Stamford, CT, United States
4.
go back to reference Ludwick MT, Murray WS (1949) Method of preparing a surface for soldering by coating with indium, in, The Indium Corporation of America, NY, United States Ludwick MT, Murray WS (1949) Method of preparing a surface for soldering by coating with indium, in, The Indium Corporation of America, NY, United States
5.
go back to reference Prasad C, Szewczyk AF (1987) Process for bonding current carrying elements to a substrate in an electronic system, and structures thereof, in, International Business Machines Corporation, Armonk, NY, United States Prasad C, Szewczyk AF (1987) Process for bonding current carrying elements to a substrate in an electronic system, and structures thereof, in, International Business Machines Corporation, Armonk, NY, United States
6.
go back to reference Hanket GM, Thompson CP, Larsen JK, Eser E, Shafarman WN (2012) Control of Ga profiles in (AgCu)(InGa)Se2 absorber layers deposited on polyimide substrates. In: 38th IEEE photovoltaic specialists conference, pp 662–667 Hanket GM, Thompson CP, Larsen JK, Eser E, Shafarman WN (2012) Control of Ga profiles in (AgCu)(InGa)Se2 absorber layers deposited on polyimide substrates. In: 38th IEEE photovoltaic specialists conference, pp 662–667
7.
go back to reference Edoff M, Jarmar T, Nilsson NS, Wallin E, Högström D, Stolt O, Lundberg O, Shafarman W, Stolt L (2017) High Voc in (Cu, Ag)(In, Ga)Se2 solar cells. IEEE J Photovolt 7:1789–1794 Edoff M, Jarmar T, Nilsson NS, Wallin E, Högström D, Stolt O, Lundberg O, Shafarman W, Stolt L (2017) High Voc in (Cu, Ag)(In, Ga)Se2 solar cells. IEEE J Photovolt 7:1789–1794
8.
go back to reference Soltanmohammad S, Berg DM, Chen L, Kim K, Simchi H, Shafarman WN (2014) Effect of sputtering sequence on the properties of Ag–Cu–In–Ga metal precursors and reacted (Ag,Cu)(In,Ga)Se2 films. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC), pp 1707–1711 Soltanmohammad S, Berg DM, Chen L, Kim K, Simchi H, Shafarman WN (2014) Effect of sputtering sequence on the properties of Ag–Cu–In–Ga metal precursors and reacted (Ag,Cu)(In,Ga)Se2 films. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC), pp 1707–1711
9.
go back to reference Soltanmohammad S, Chen L, McCandless B, Shafarman WN (2017) Ag–Cu–In–Ga metal precursor thin films for (Ag, Cu)(In, Ga)Se2 solar cells. IEEE J. Photovolt 7:273–280 Soltanmohammad S, Chen L, McCandless B, Shafarman WN (2017) Ag–Cu–In–Ga metal precursor thin films for (Ag, Cu)(In, Ga)Se2 solar cells. IEEE J. Photovolt 7:273–280
10.
go back to reference Soltanmohammad S, Shafarman WN (2016) Reaction pathway analysis of Ag-alloyed Cu(In, Ga)Se2 absorber materials. In: 2016 IEEE 43rd photovoltaic specialists conference (PVSC), pp 2269–2273 Soltanmohammad S, Shafarman WN (2016) Reaction pathway analysis of Ag-alloyed Cu(In, Ga)Se2 absorber materials. In: 2016 IEEE 43rd photovoltaic specialists conference (PVSC), pp 2269–2273
11.
go back to reference Soltanmohammad S, Chen L, McCandless BE, Shafarman WN (2017) Phase stability in Ag–Cu–In–Ga metal precursors for (Ag, Cu)(In, Ga)Se2 thin films. Sol Energy Mater Sol Cells 172:347–352 Soltanmohammad S, Chen L, McCandless BE, Shafarman WN (2017) Phase stability in Ag–Cu–In–Ga metal precursors for (Ag, Cu)(In, Ga)Se2 thin films. Sol Energy Mater Sol Cells 172:347–352
12.
go back to reference Soltanmohammad S, McCandless B, Shafarman WN (2017) A quaternary Laves-type phase in Ag–Cu–In–Ga thin films. J Alloy Compd 710:819–824 Soltanmohammad S, McCandless B, Shafarman WN (2017) A quaternary Laves-type phase in Ag–Cu–In–Ga thin films. J Alloy Compd 710:819–824
13.
go back to reference Cao W, Chang YA, Zhu J, Chen S, Oates WA (2007) Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation. Intermetallics 15:1438–1446 Cao W, Chang YA, Zhu J, Chen S, Oates WA (2007) Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation. Intermetallics 15:1438–1446
14.
go back to reference Hayes FH, Lukas HL, Effenberg G, Petzow G (1986) A thermodynamic optimisation of the Cu–Ag–Pb system. Z Metallk 77:749–754 Hayes FH, Lukas HL, Effenberg G, Petzow G (1986) A thermodynamic optimisation of the Cu–Ag–Pb system. Z Metallk 77:749–754
15.
go back to reference He XC, Wang H, Liu HS, Jin ZP (2006) Thermodynamic description of the Cu–Ag–Zr system. Calphad 30:367–374 He XC, Wang H, Liu HS, Jin ZP (2006) Thermodynamic description of the Cu–Ag–Zr system. Calphad 30:367–374
16.
go back to reference Kusoffsky A (2002) Thermodynamic evaluation of the ternary Ag–Au–Cu system-including a short range order description. Acta Mater 50:5139–5145 Kusoffsky A (2002) Thermodynamic evaluation of the ternary Ag–Au–Cu system-including a short range order description. Acta Mater 50:5139–5145
17.
go back to reference Li Z (2016) Thermodynamic assessments and atomic layer deposition for CIGS-based thin film solar cell. In: Chemical Engineering, University of Florida, Gainesville, FL Li Z (2016) Thermodynamic assessments and atomic layer deposition for CIGS-based thin film solar cell. In: Chemical Engineering, University of Florida, Gainesville, FL
18.
go back to reference Lim MS-S, Tibballs JE, Rossiter PL (1997) An assessment of thermodynamic equilibria in the Ag–Al–Cu–Mg quaternary system in relation to precipitation reactions. Z Metallk 88:236–245 Lim MS-S, Tibballs JE, Rossiter PL (1997) An assessment of thermodynamic equilibria in the Ag–Al–Cu–Mg quaternary system in relation to precipitation reactions. Z Metallk 88:236–245
19.
go back to reference Moon KW, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA (2000) Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J Electron Mater 29:1122–1136 Moon KW, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA (2000) Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J Electron Mater 29:1122–1136
20.
go back to reference Murray J (1984) Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems. Metall Trans A 15:261–268 Murray J (1984) Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems. Metall Trans A 15:261–268
21.
go back to reference Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: Part I—reassessment of the constituent binaries on the basis of new experimental data. J Alloy Compd 385:133–143 Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: Part I—reassessment of the constituent binaries on the basis of new experimental data. J Alloy Compd 385:133–143
22.
go back to reference Borisov II, Manasijević DM, Živković DT (2007) Proračun faznih ravnoteža u sistemu Ag–In–Sb Calphad metodom. Hem Ind 61:152–156 Borisov II, Manasijević DM, Živković DT (2007) Proračun faznih ravnoteža u sistemu Ag–In–Sb Calphad metodom. Hem Ind 61:152–156
23.
go back to reference Gierlotka W (2012) Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J Electron Mater 41:86–108 Gierlotka W (2012) Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J Electron Mater 41:86–108
24.
go back to reference Jendrzejczyk D, Fitzner K (2005) Thermodynamic properties of liquid silver-indium alloys determined from e.m.f. measurements. Thermochim Acta 433:66–71 Jendrzejczyk D, Fitzner K (2005) Thermodynamic properties of liquid silver-indium alloys determined from e.m.f. measurements. Thermochim Acta 433:66–71
25.
go back to reference Korhonen TM, Kivilahti J (1998) Thermodynamics of the Sn–In–Ag solder system. J Electron Mater 27:149–158 Korhonen TM, Kivilahti J (1998) Thermodynamics of the Sn–In–Ag solder system. J Electron Mater 27:149–158
26.
go back to reference Moser Z, Gasior W, Pstrus J, Zakulski W, Ohnuma I, Liu X, Inohana Y, Ishida K (2001) Studies of the Ag–In phase diagram and surface tension measurements. J Electron Mater 30:1120–1128 Moser Z, Gasior W, Pstrus J, Zakulski W, Ohnuma I, Liu X, Inohana Y, Ishida K (2001) Studies of the Ag–In phase diagram and surface tension measurements. J Electron Mater 30:1120–1128
28.
go back to reference Gebhardt E, Dreher M (1951) Über den Aufbau des Systems Kupfer-Silber-Indium I. Gleichgewichtsverlauf auf der Kupfer-Silber-Seite. Z Metallk 42:230–238 Gebhardt E, Dreher M (1951) Über den Aufbau des Systems Kupfer-Silber-Indium I. Gleichgewichtsverlauf auf der Kupfer-Silber-Seite. Z Metallk 42:230–238
29.
go back to reference Gebhardt E, Dreher M (1952) Über den Aufbau des Systems Kupfer-Silber-Indium II. Gleichgewichtsverlauf bis zu Indiumgehalten von 30%. Z Metallk 43:357–363 Gebhardt E, Dreher M (1952) Über den Aufbau des Systems Kupfer-Silber-Indium II. Gleichgewichtsverlauf bis zu Indiumgehalten von 30%. Z Metallk 43:357–363
30.
go back to reference Bahari Z, Elgadi M, Rivet J, Dugué J (2009) Experimental study of the ternary Ag–Cu–In phase diagram. J Alloy Compd 477:152–165 Bahari Z, Elgadi M, Rivet J, Dugué J (2009) Experimental study of the ternary Ag–Cu–In phase diagram. J Alloy Compd 477:152–165
31.
go back to reference Haque MA, Gierlotka W (2013) Phase equilibria of the ternary Ag–Cu–In system at 300 °C. Int J Min Metall Mech Eng 1:173–177 Haque MA, Gierlotka W (2013) Phase equilibria of the ternary Ag–Cu–In system at 300 °C. Int J Min Metall Mech Eng 1:173–177
32.
go back to reference Sisamouth L, Hamdi M, Ariga T (2010) Investigation of gap filling ability of Ag–Cu–In brazing filler metals. J Alloy Compd 504:325–329 Sisamouth L, Hamdi M, Ariga T (2010) Investigation of gap filling ability of Ag–Cu–In brazing filler metals. J Alloy Compd 504:325–329
33.
go back to reference Wierzbicka A, Czeppe T, Zabdyr L (2006) Experimental study of phase equilibria in the silver–copper–indium alloys. Arch Metall Mater 51:377–387 Wierzbicka A, Czeppe T, Zabdyr L (2006) Experimental study of phase equilibria in the silver–copper–indium alloys. Arch Metall Mater 51:377–387
34.
go back to reference Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vízdal J, Zemanova A (2007) The development of the COST 531 lead-free solders thermodynamic database. JOM 59:20–25 Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vízdal J, Zemanova A (2007) The development of the COST 531 lead-free solders thermodynamic database. JOM 59:20–25
35.
go back to reference Bienzle M, Oishi T, Sommer F, Ono K (1992) Thermodynamic study of the silver-rich Ag–Cu solid solution. Mater Trans JIM 33:51–56 Bienzle M, Oishi T, Sommer F, Ono K (1992) Thermodynamic study of the silver-rich Ag–Cu solid solution. Mater Trans JIM 33:51–56
36.
go back to reference Subramanian PR, Perepezko JH (1993) The Ag–Cu (silver–copper) system. J Phase Equilib 14:62–75 Subramanian PR, Perepezko JH (1993) The Ag–Cu (silver–copper) system. J Phase Equilib 14:62–75
37.
go back to reference Fitzner K, Guo Q, Wang J, Kleppa OJ (1999) Enthalpies of liquid-liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in situ mixing device in a high temperature single-unit differential calorimeter. J Alloy Compd 291:190–200 Fitzner K, Guo Q, Wang J, Kleppa OJ (1999) Enthalpies of liquid-liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in situ mixing device in a high temperature single-unit differential calorimeter. J Alloy Compd 291:190–200
38.
go back to reference Bahari Z, Rivet J, Legendre B, Dugué J (1999) Study of the Ag-In-Te ternary system: II. Description of the quadrilateral Ag–Ag2Te–In2Te3–In. J Alloy Compd 289:99–115 Bahari Z, Rivet J, Legendre B, Dugué J (1999) Study of the Ag-In-Te ternary system: II. Description of the quadrilateral Ag–Ag2Te–In2Te3–In. J Alloy Compd 289:99–115
39.
go back to reference Campbell AN, Wagemann R, Ferguson RB (1970) The silver-indium system: thermal analysis, photomicrography, electron microprobe, and X-ray powder diffraction results. Can J Chem 48:1703–1715 Campbell AN, Wagemann R, Ferguson RB (1970) The silver-indium system: thermal analysis, photomicrography, electron microprobe, and X-ray powder diffraction results. Can J Chem 48:1703–1715
40.
go back to reference Hellner E (1951) Das zweistoffsystem silber-indium. Z Metallk 42:17–19 Hellner E (1951) Das zweistoffsystem silber-indium. Z Metallk 42:17–19
41.
go back to reference Weibke F, Eggers H (1935) Das zustandsdiagramm des systems silber-indium. Z Anorg Allg Chem 222:145–160 Weibke F, Eggers H (1935) Das zustandsdiagramm des systems silber-indium. Z Anorg Allg Chem 222:145–160
42.
go back to reference Brandon JK, Brizard RY, Pearson WB, Tozer DJN (1977) γ-Brasses with I and P cells. Acta Crystallogr B 33:527–537 Brandon JK, Brizard RY, Pearson WB, Tozer DJN (1977) γ-Brasses with I and P cells. Acta Crystallogr B 33:527–537
43.
go back to reference Bahari Z, Dugué J (2017) Thermodynamic studies of the binary systems Ag–In and Cu–In. Eur Phys J Spec Top 226:1137–1142 Bahari Z, Dugué J (2017) Thermodynamic studies of the binary systems Ag–In and Cu–In. Eur Phys J Spec Top 226:1137–1142
44.
go back to reference Muzzillo CP (2015) Chalcopyrites for solar cells: chemical vapor deposition, selenization, and alloying. Chemical Engineering. University of Florida, Gainesville, p 458 Muzzillo CP (2015) Chalcopyrites for solar cells: chemical vapor deposition, selenization, and alloying. Chemical Engineering. University of Florida, Gainesville, p 458
45.
go back to reference Cao S, Huang S, Chu M, Yue Q, Shen J (2007) Thermodynamic optimization of Cu–In system. Chin J Rare Met 31:807–812 Cao S, Huang S, Chu M, Yue Q, Shen J (2007) Thermodynamic optimization of Cu–In system. Chin J Rare Met 31:807–812
46.
go back to reference Schmid-Fetzer R, Andersson D, Chevalier PY, Eleno L, Fabrichnaya O, Kattner UR, Sundman B, Wang C, Watson A, Zabdyr L, Zinkevich M (2007) Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31:38–52 Schmid-Fetzer R, Andersson D, Chevalier PY, Eleno L, Fabrichnaya O, Kattner UR, Sundman B, Wang C, Watson A, Zabdyr L, Zinkevich M (2007) Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31:38–52
47.
go back to reference Mizutani U, Noritake T, Ohsuna T, Takeuchi T (2010) Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu–Zn, Cu–Cd, Cu–Al, Cu–Ga, Ni–Zn and Co–Zn alloy systems. Philos Mag 90:1985–2008 Mizutani U, Noritake T, Ohsuna T, Takeuchi T (2010) Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu–Zn, Cu–Cd, Cu–Al, Cu–Ga, Ni–Zn and Co–Zn alloy systems. Philos Mag 90:1985–2008
48.
go back to reference Ma X, Li L-F, Zhang Z-H, Wang H, Wang E-Z, Qiu T (2015) Microstructure and melting properties of Ag–Cu–In intermediate-temperature brazing alloys. Rare Met 34:324–328 Ma X, Li L-F, Zhang Z-H, Wang H, Wang E-Z, Qiu T (2015) Microstructure and melting properties of Ag–Cu–In intermediate-temperature brazing alloys. Rare Met 34:324–328
49.
go back to reference Alcock CB, Sridhar R, Svedberg RC (1969) A mass spectrometric study of the binary liquid alloys, Ag–In and Cu–Sn. Acta Metall 17:839–844 Alcock CB, Sridhar R, Svedberg RC (1969) A mass spectrometric study of the binary liquid alloys, Ag–In and Cu–Sn. Acta Metall 17:839–844
50.
go back to reference Kameda K, Yoshida Y, Sakairi S (1981) Activities of liquid silver–indium alloys by E.M.F. Measurements using zirconia solid and fused salt electrolytes. J Jpn Inst Met 45:614–620 Kameda K, Yoshida Y, Sakairi S (1981) Activities of liquid silver–indium alloys by E.M.F. Measurements using zirconia solid and fused salt electrolytes. J Jpn Inst Met 45:614–620
51.
go back to reference Mycielska EP, Terpilowski J, Strozecka K (1963) Arch Hutn 8:85–102 Mycielska EP, Terpilowski J, Strozecka K (1963) Arch Hutn 8:85–102
52.
go back to reference Nozaki T, Shimoji M, Niwa K (1966) Thermodynamic studies on liquid silver–indium alloys. Trans Jpn Inst Met 7:52–55 Nozaki T, Shimoji M, Niwa K (1966) Thermodynamic studies on liquid silver–indium alloys. Trans Jpn Inst Met 7:52–55
53.
go back to reference Predel B, Schallner U (1972) Untersuchung der thermodynamischen Eigenschaften flüssiger binärer Legierungen des Silbers und Goldes mit Gallium, Indium und Germanium. Z Metallk 63:341–347 Predel B, Schallner U (1972) Untersuchung der thermodynamischen Eigenschaften flüssiger binärer Legierungen des Silbers und Goldes mit Gallium, Indium und Germanium. Z Metallk 63:341–347
54.
go back to reference Qi G, Hino M, Azakami T (1989) Thermodynamic study of liquid Ag–In and Ag–Ga alloys with a Knudsen cell-mass spectrometer. Mater Trans JIM 30:575–582 Qi G, Hino M, Azakami T (1989) Thermodynamic study of liquid Ag–In and Ag–Ga alloys with a Knudsen cell-mass spectrometer. Mater Trans JIM 30:575–582
55.
go back to reference Béja R, Laffitte M (1968) Enthalpie de mélange des alliages liquides argent-gallium á 500 °C. C R Acad Sci C Chim 267C:123–126 Béja R, Laffitte M (1968) Enthalpie de mélange des alliages liquides argent-gallium á 500 °C. C R Acad Sci C Chim 267C:123–126
56.
go back to reference Castanet R, Claire Y, Laffitte M (1970) Propriétés thermodynamiques des solutions liquides argent-indium. J Chim Phys Phys Chim Biol 67:789–793 Castanet R, Claire Y, Laffitte M (1970) Propriétés thermodynamiques des solutions liquides argent-indium. J Chim Phys Phys Chim Biol 67:789–793
57.
go back to reference Itagaki K, Yazawa A (1968) Measurements of heats of mixing in liquid silver binary alloys. J Jpn Inst Met 32:1294–1300 Itagaki K, Yazawa A (1968) Measurements of heats of mixing in liquid silver binary alloys. J Jpn Inst Met 32:1294–1300
58.
go back to reference Kleppa OJ (1956) Heat of formation of solid and liquid alloys in the systems silver–cadmium, silver–indium and silver–antimony at 450°. J Phys Chem 60:846–852 Kleppa OJ (1956) Heat of formation of solid and liquid alloys in the systems silver–cadmium, silver–indium and silver–antimony at 450°. J Phys Chem 60:846–852
59.
go back to reference Hume-Rothery W, Mabbott GW, Evans KMC (1934) The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups. Philos Trans R Soc A 233:1–97 Hume-Rothery W, Mabbott GW, Evans KMC (1934) The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups. Philos Trans R Soc A 233:1–97
60.
go back to reference Orr RL, Hultgren R (1961) Heats of formation of α-phase silver–indium alloys. J Phys Chem 65:378–380 Orr RL, Hultgren R (1961) Heats of formation of α-phase silver–indium alloys. J Phys Chem 65:378–380
61.
go back to reference Masson DB, Pradhan SS (1973) Measurement of vapor pressure of indium over α Ag–In using atomic absorption. Metall Trans 4:991–995 Masson DB, Pradhan SS (1973) Measurement of vapor pressure of indium over α Ag–In using atomic absorption. Metall Trans 4:991–995
62.
go back to reference Alcock CB, Jacob KT, Palamutçu T (1973) Thermodynamics of α-solid solutions of silver with indium and tin. Acta Metall 21:1003–1009 Alcock CB, Jacob KT, Palamutçu T (1973) Thermodynamics of α-solid solutions of silver with indium and tin. Acta Metall 21:1003–1009
63.
go back to reference Wallbrecht PC, Blachnik R, Mills KC (1981) The heat capacity and enthalpy of some hume-rothery phases formed by copper, silver and gold. Part III. Cu + Ga, Ag + Ga, Au + Ga, Cu + In, Ag + In and Au + In systems. Thermochim Acta 48:69–82 Wallbrecht PC, Blachnik R, Mills KC (1981) The heat capacity and enthalpy of some hume-rothery phases formed by copper, silver and gold. Part III. Cu + Ga, Ag + Ga, Au + Ga, Cu + In, Ag + In and Au + In systems. Thermochim Acta 48:69–82
65.
go back to reference Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425 Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425
66.
go back to reference Che GC, Ellner M (1992) Powder crystal data for the high-temperature phases Cu4In, Cu9In4(h) and Cu2In(h). Powder Diffr 7:107–108 Che GC, Ellner M (1992) Powder crystal data for the high-temperature phases Cu4In, Cu9In4(h) and Cu2In(h). Powder Diffr 7:107–108
67.
go back to reference Morris DP, Williams I (1961) The β-Ag3In phase. Acta Crystallogr 14:74 Morris DP, Williams I (1961) The β-Ag3In phase. Acta Crystallogr 14:74
68.
go back to reference Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33:328–342 Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33:328–342
69.
go back to reference Muggianu Y-M, Gambino M, Bros J-P (1975) Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723 K—choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. J Chim Phys Phys Chim Biol 72:83–88 Muggianu Y-M, Gambino M, Bros J-P (1975) Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723 K—choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. J Chim Phys Phys Chim Biol 72:83–88
70.
go back to reference Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics—the Calphad method. Cambridge University Press, Cambridge Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics—the Calphad method. Cambridge University Press, Cambridge
71.
go back to reference Sundman B, Ågren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42:297–301 Sundman B, Ågren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42:297–301
72.
go back to reference Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348 Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348
73.
go back to reference Hillert M (1980) Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 4:1–12 Hillert M (1980) Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 4:1–12
Metadata
Title
Thermodynamic assessment of Ag–Cu–In
Authors
Christopher P. Muzzillo
Tim Anderson
Publication date
16-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-1999-8

Other articles of this Issue 9/2018

Journal of Materials Science 9/2018 Go to the issue

Premium Partners