Skip to main content
Top
Published in: Journal of Materials Science 9/2018

23-01-2018 | Metals

Modeling the growth of austenite in association with cementite during continuous heating in low-carbon martensite

Authors: M. Enomoto, K. Hayashi

Published in: Journal of Materials Science | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growth of austenite during continuous heating in plain low-carbon martensite is simulated extending the analytical model by Judd and Paxton to include the carbon diffusion through the matrix. It is assumed that cementite is fully precipitated at an early stage of heating so that austenite is nucleated above the eutectoid temperature either on cementite or away from it, e.g., on prior austenite grain boundary. The austenite grows fast until all cementite particles vanish and thereafter continues to grow at a gradually increasing rate with temperature. Cementite particles remain up to a higher temperature with the increase in heating rate, initial particle size of cementite and the decrease in the number of austenite nuclei. Due to slow carbon diffusivity in austenite, the cementite free of austenite tends to dissolve faster than the cementite on which austenite was nucleated except when the particle size of cementite and/or the number of austenite nuclei is small.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Senuma S (2012) Preface to the special issue on “cutting edge of mathematical models for predicting microstructures and mechanical properties of steels”. ISIJ Int 52:539CrossRef Senuma S (2012) Preface to the special issue on “cutting edge of mathematical models for predicting microstructures and mechanical properties of steels”. ISIJ Int 52:539CrossRef
2.
go back to reference Speich GR, Szirmae A (1969) Formation of austenite from ferrite and ferrite-carbide aggregates. Trans TMS AIME 245:1063–1074 Speich GR, Szirmae A (1969) Formation of austenite from ferrite and ferrite-carbide aggregates. Trans TMS AIME 245:1063–1074
3.
go back to reference Speich GR, Demarest VA, Miller RL (1981) Formation of austenite during intercritical annealing of dual-phase steels. Metall Trans A 12A:1419–1428CrossRef Speich GR, Demarest VA, Miller RL (1981) Formation of austenite during intercritical annealing of dual-phase steels. Metall Trans A 12A:1419–1428CrossRef
4.
go back to reference Fridberg J, Törndahl LE, Hillert M (1969) Diffusion in iron. Jernkont Ann 153:263–276 Fridberg J, Törndahl LE, Hillert M (1969) Diffusion in iron. Jernkont Ann 153:263–276
5.
go back to reference Ågren J (1982) Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels. Acta Metall 30:841–851CrossRef Ågren J (1982) Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels. Acta Metall 30:841–851CrossRef
6.
go back to reference Wei R, Enomoto M, Hadian R, Zurob HS, Purdy GR (2013) Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1 C–3Mn–1.5 Si alloy. Acta Mater 61:697–707CrossRef Wei R, Enomoto M, Hadian R, Zurob HS, Purdy GR (2013) Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1 C–3Mn–1.5 Si alloy. Acta Mater 61:697–707CrossRef
7.
go back to reference Nakada NN, Mizutani K, Tsuchiyama T, Takaki S (2014) Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater 65:251–258CrossRef Nakada NN, Mizutani K, Tsuchiyama T, Takaki S (2014) Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater 65:251–258CrossRef
8.
go back to reference Wei R, Enomoto M (2015) Growth of austenite from martensite at a late stage of austenitization in an Fe–0.1C–3Mn–1.5Si alloy. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C, Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials (PTM2015). TMS, Warrendale, PA, Canada, pp 131–137 Wei R, Enomoto M (2015) Growth of austenite from martensite at a late stage of austenitization in an Fe–0.1C–3Mn–1.5Si alloy. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C, Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials (PTM2015). TMS, Warrendale, PA, Canada, pp 131–137
9.
go back to reference Judd RR, Paxton HW (1968) Kinetics of austenite formation from a spheroidized ferrite-carbide aggregate. Trans TMS AIME 242:206–215 Judd RR, Paxton HW (1968) Kinetics of austenite formation from a spheroidized ferrite-carbide aggregate. Trans TMS AIME 242:206–215
10.
go back to reference Caballero FG, Capdevila C, De Andrès CG (2001) Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metall Mater Trans A 32:1283–1291CrossRef Caballero FG, Capdevila C, De Andrès CG (2001) Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metall Mater Trans A 32:1283–1291CrossRef
11.
go back to reference Luo H, Shi J, Wang C, Cao W, Sun X, Dong H (2011) Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater 59:4002–4014CrossRef Luo H, Shi J, Wang C, Cao W, Sun X, Dong H (2011) Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater 59:4002–4014CrossRef
12.
go back to reference Azizi-Alizamini H, Militzer M, Poole WJ (2011) Austenite formation in plain low-carbon steels. Metall Mater Trans A 42:1544–1557CrossRef Azizi-Alizamini H, Militzer M, Poole WJ (2011) Austenite formation in plain low-carbon steels. Metall Mater Trans A 42:1544–1557CrossRef
14.
go back to reference Nagakura S, Hirotsu Y, Kusunoki M, Suzuki T, Nakamura Y (1983) Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction. Metall Mater Trans A 14:1025–1031CrossRef Nagakura S, Hirotsu Y, Kusunoki M, Suzuki T, Nakamura Y (1983) Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction. Metall Mater Trans A 14:1025–1031CrossRef
15.
go back to reference Danoix F, Zapolsky H, Allain S, Gouné M (2015) Segregation and redistribution from supersaturated virgin Fe–C martensites. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C, Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials (PTM2015). TMS, Warrendale, PA, Canada, pp 537–538 Danoix F, Zapolsky H, Allain S, Gouné M (2015) Segregation and redistribution from supersaturated virgin Fe–C martensites. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C, Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials (PTM2015). TMS, Warrendale, PA, Canada, pp 537–538
16.
go back to reference Speich GR (1969) Tempering of low-carbon martensite. Trans TMS AIME 245:2553–2564 Speich GR (1969) Tempering of low-carbon martensite. Trans TMS AIME 245:2553–2564
17.
go back to reference Hayashi K, Enomoto M (2017) Unpublished research, Nippon Steel and Sumitomo Metal Corporation Hayashi K, Enomoto M (2017) Unpublished research, Nippon Steel and Sumitomo Metal Corporation
18.
go back to reference Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20:950–953CrossRef Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20:950–953CrossRef
19.
go back to reference Aaron HB, Fainstein D, Kotler GR (1970) Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. J Appl Phys 41:4404–4410CrossRef Aaron HB, Fainstein D, Kotler GR (1970) Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. J Appl Phys 41:4404–4410CrossRef
20.
go back to reference Enomoto M, Aaronson HI (1980) On the linearized gradient approximation for diffusion-limited growth of a spherical precipitate. J Appl Phys 51:818–819CrossRef Enomoto M, Aaronson HI (1980) On the linearized gradient approximation for diffusion-limited growth of a spherical precipitate. J Appl Phys 51:818–819CrossRef
21.
go back to reference Perez M (2005) Gibbs–Thomson effects in phase transformations. Scr Mater 52:709–712CrossRef Perez M (2005) Gibbs–Thomson effects in phase transformations. Scr Mater 52:709–712CrossRef
22.
go back to reference Okamoto H (1993) C–Fe (Carbon–Iron). In: Okamoto H (ed) Phase diagrams of binary iron alloys. ASM, Metals Park, pp 64–83 Okamoto H (1993) C–Fe (Carbon–Iron). In: Okamoto H (ed) Phase diagrams of binary iron alloys. ASM, Metals Park, pp 64–83
23.
go back to reference Qiu C, Sybrand Van der Zwaag S (1997) Dilatation measurements of plain carbon steels and their thermodynamic analysis. Steel Res Int 68:32–38CrossRef Qiu C, Sybrand Van der Zwaag S (1997) Dilatation measurements of plain carbon steels and their thermodynamic analysis. Steel Res Int 68:32–38CrossRef
24.
go back to reference Ågren J (1990) Kinetics of carbide dissolution. Scand J Metall 19:2–8 Ågren J (1990) Kinetics of carbide dissolution. Scand J Metall 19:2–8
25.
go back to reference Aaronson HI, Enomoto M, Lee JK (2010) Mechanisms of diffusional phase transformations in metals and alloys. CRC Press/Taylor & Francis, Boca Raton, pp 49–248CrossRef Aaronson HI, Enomoto M, Lee JK (2010) Mechanisms of diffusional phase transformations in metals and alloys. CRC Press/Taylor & Francis, Boca Raton, pp 49–248CrossRef
26.
go back to reference Van Vlack LH (1951) Intergranular energy of iron and some iron alloys. Trans TMS AIME 191:251–259 Van Vlack LH (1951) Intergranular energy of iron and some iron alloys. Trans TMS AIME 191:251–259
27.
go back to reference Smith CS (1953) Microstructure. Trans ASM 45:533–575 Smith CS (1953) Microstructure. Trans ASM 45:533–575
28.
go back to reference Gjostein NA, Domian HA, Aaronson HI, Eichen E (1966) Relative interfacial energies in Fe–C alloys. Acta Metall 14:1637–1644CrossRef Gjostein NA, Domian HA, Aaronson HI, Eichen E (1966) Relative interfacial energies in Fe–C alloys. Acta Metall 14:1637–1644CrossRef
29.
go back to reference Lang WF, Enomoto M, Aaronson HI (1988) The kinetics of ferrite nucleation at austenite grain boundaries in Fe–C alloys. Metall Trans A 19A:427–440CrossRef Lang WF, Enomoto M, Aaronson HI (1988) The kinetics of ferrite nucleation at austenite grain boundaries in Fe–C alloys. Metall Trans A 19A:427–440CrossRef
30.
go back to reference Offerman SE et al (2002) Grain nucleation and growth during phase transformations. Science 298:1003–1005CrossRef Offerman SE et al (2002) Grain nucleation and growth during phase transformations. Science 298:1003–1005CrossRef
31.
go back to reference Sharma H (2012) In-situ characterization of grain nucleation and coarsening in metallic microstructures using synchrotron radiation. PhD Dissertation, Delft University of Technology Sharma H (2012) In-situ characterization of grain nucleation and coarsening in metallic microstructures using synchrotron radiation. PhD Dissertation, Delft University of Technology
33.
go back to reference Kozeschnik E, Svoboda J, Fisher FD (2006) Shape factors in modeling of precipitation. Mater Sci Eng A441:68–72CrossRef Kozeschnik E, Svoboda J, Fisher FD (2006) Shape factors in modeling of precipitation. Mater Sci Eng A441:68–72CrossRef
34.
go back to reference Das SK, Biswas A, Ghosh RN (1993) Volume fraction dependent particle coarsening in plain carbon steel. Acta Metall 41:777–781CrossRef Das SK, Biswas A, Ghosh RN (1993) Volume fraction dependent particle coarsening in plain carbon steel. Acta Metall 41:777–781CrossRef
35.
go back to reference Miyamoto G, Oh JC, Hono K, Furuhara T, Maki T (2007) Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater 55:5027–5038CrossRef Miyamoto G, Oh JC, Hono K, Furuhara T, Maki T (2007) Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater 55:5027–5038CrossRef
36.
go back to reference Enomoto M (1998) Nucleation of phase transformations at intragranular inclusions in steel. Metals Mater 4:115–123CrossRef Enomoto M (1998) Nucleation of phase transformations at intragranular inclusions in steel. Metals Mater 4:115–123CrossRef
Metadata
Title
Modeling the growth of austenite in association with cementite during continuous heating in low-carbon martensite
Authors
M. Enomoto
K. Hayashi
Publication date
23-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2020-2

Other articles of this Issue 9/2018

Journal of Materials Science 9/2018 Go to the issue

Premium Partners