Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 14/2017

29-03-2017

Thermoelectric properties of CoSb3 and CoSb3/SiC composites prepared by mechanical alloying and microwave sintering

Authors: Hanming Zhu, Shaojun Liang, Ting Ouyang, Song Yue, Jun Jiang

Published in: Journal of Materials Science: Materials in Electronics | Issue 14/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pure CoSb3 and 0.1 vol% nano-SiC-composited CoSb3 were prepared by mechanical alloying and subsequent fast microwave sintering. The electrical transport properties display totally different behaviors in microwave-annealed CoSb3 and CoSb3/SiC composites, implying their susceptibility to the preparation conditions or uncertainties. The unique microstructure including the inter-granular and intra-granular precipitates combined with high porosity of the microwave-synthesized CoSb3 and CoSb3/SiC composites lead to low thermal conductivity, which compensates the loss in electrical conductivity and results in comparable figure of merit ZT value with those reported for undoped CoSb3 from conventional method requiring high energy consumption and lengthy synthesis time. The results show that low compactness is not detrimental for the thermoelectric performance and microwave is a highly cost-effective technique for large-scale production of thermoelectric materials possessing nanostructure and low thermal conductivity. In fact, such synthesis route combining mechanical alloying and microwave annealing might be also suitable for other high performance thermoelectric materials. Actually, continuous fabrication can be readily realized in an upgraded tube microwave heating system for higher energy efficiency ratio.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466 (2009)CrossRef A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466 (2009)CrossRef
2.
go back to reference E.S. Toberer, A.F. May, G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624 (2010)CrossRef E.S. Toberer, A.F. May, G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624 (2010)CrossRef
3.
go back to reference M.G. Kanatzidis, Nanostructured thermoelectrics: the new paradigm?, Chem. Mater. 22, 648 (2010)CrossRef M.G. Kanatzidis, Nanostructured thermoelectrics: the new paradigm?, Chem. Mater. 22, 648 (2010)CrossRef
4.
go back to reference X.Y. Li, L.D. Chen, J.F. Fan, W.B. Zhang, T. Kawahara, T. Hirai, Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J. Appl. Phys. 98, 083702 (2005)CrossRef X.Y. Li, L.D. Chen, J.F. Fan, W.B. Zhang, T. Kawahara, T. Hirai, Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J. Appl. Phys. 98, 083702 (2005)CrossRef
5.
go back to reference W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, Enhanced thermoelectric properties in CoSb3–xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102, 103717 (2007)CrossRef W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, Enhanced thermoelectric properties in CoSb3–xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102, 103717 (2007)CrossRef
6.
go back to reference L. Yang, H.H. Hng, D. Li, Q.Y. Yan, J. Ma, T.J. Zhu, X.B. Zhao, H. Huang, Thermoelectric properties of p-type CoSb3 nanocomposites with dispersed CoSb3 nanoparticles. J. Appl. Phys. 106, 013705 (2009)CrossRef L. Yang, H.H. Hng, D. Li, Q.Y. Yan, J. Ma, T.J. Zhu, X.B. Zhao, H. Huang, Thermoelectric properties of p-type CoSb3 nanocomposites with dispersed CoSb3 nanoparticles. J. Appl. Phys. 106, 013705 (2009)CrossRef
7.
go back to reference Y.G. Zhu, H.L. Shen, L.Y. Zuo, H. Guan, Thermoelectric properties and electronic structure of Te-doped CoSb3 compounds. Solid State Commun. 121, 1388 (2011)CrossRef Y.G. Zhu, H.L. Shen, L.Y. Zuo, H. Guan, Thermoelectric properties and electronic structure of Te-doped CoSb3 compounds. Solid State Commun. 121, 1388 (2011)CrossRef
8.
go back to reference P.F. Wen, P. Li, Q.J. Zhang, Z.W. Ruan, L.S. Liu, P.C. Zhai, Effects of annealing on microstructure and thermoelectric properties of nanostructured CoSb3. J. Electron. Mater. 42, 1443 (2013)CrossRef P.F. Wen, P. Li, Q.J. Zhang, Z.W. Ruan, L.S. Liu, P.C. Zhai, Effects of annealing on microstructure and thermoelectric properties of nanostructured CoSb3. J. Electron. Mater. 42, 1443 (2013)CrossRef
9.
go back to reference A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, M.S. Toprak, Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3. J. Alloy. Compd. 612, 293 (2014)CrossRef A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, M.S. Toprak, Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3. J. Alloy. Compd. 612, 293 (2014)CrossRef
10.
go back to reference A. Gharleghi, C.J. Liu, Rapid fabrication and transport properties of n-type Co4–xNixSb12 via modified polyol process synthesis combined with evacuated-and-encapsulated sintering. J. Alloy. Compd. 592, 277 (2014)CrossRef A. Gharleghi, C.J. Liu, Rapid fabrication and transport properties of n-type Co4–xNixSb12 via modified polyol process synthesis combined with evacuated-and-encapsulated sintering. J. Alloy. Compd. 592, 277 (2014)CrossRef
11.
go back to reference L. Deng, L.B. Wang, X.P. Jia, H.A. Ma, J.M. Qin, Y.C. Wan, Improvement of thermoelectric performance for Te-doped CoSb3 by higher synthesis pressure. J. Alloy. Compd. 602, 117 (2014)CrossRef L. Deng, L.B. Wang, X.P. Jia, H.A. Ma, J.M. Qin, Y.C. Wan, Improvement of thermoelectric performance for Te-doped CoSb3 by higher synthesis pressure. J. Alloy. Compd. 602, 117 (2014)CrossRef
12.
go back to reference J. Khaliq, Q.H. Jiang, J.Y. Yang, K. Simpson, H. Yan, M.J. Reece, Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta. Mater. 63, 72–73 (2014) J. Khaliq, Q.H. Jiang, J.Y. Yang, K. Simpson, H. Yan, M.J. Reece, Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta. Mater. 63, 72–73 (2014)
13.
go back to reference Q. Zhang, C. Chen, Y.L. Kang, X.D. Li, L. Zhang, D.L. Yu, Y.J. Tian, B. Xu, Structural and thermoelectric characterizations of samarium filled CoSb3 skutterudites. Mater. Lett. 143, 41 (2015)CrossRef Q. Zhang, C. Chen, Y.L. Kang, X.D. Li, L. Zhang, D.L. Yu, Y.J. Tian, B. Xu, Structural and thermoelectric characterizations of samarium filled CoSb3 skutterudites. Mater. Lett. 143, 41 (2015)CrossRef
14.
go back to reference X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, T. Goto, Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006)CrossRef X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, T. Goto, Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006)CrossRef
15.
go back to reference Z.M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S.H. Li, M. Toprak, M. Muhammed, Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007)CrossRef Z.M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S.H. Li, M. Toprak, M. Muhammed, Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007)CrossRef
16.
go back to reference D.G. Zhao, M. Zuo, J.F. Leng, H.R. Geng, Synthesis and thermoelectric properties of CoSb3/WO3 thermoelectric composites. Intermetallics 40, 71 (2013)CrossRef D.G. Zhao, M. Zuo, J.F. Leng, H.R. Geng, Synthesis and thermoelectric properties of CoSb3/WO3 thermoelectric composites. Intermetallics 40, 71 (2013)CrossRef
17.
go back to reference R.D. Schmidt, E.D. Case, J.E. Ni, R.M. Trejo, E. Lara-Curzio, R.J. Korkosz, M.G. Kanatzidis, High-temperature elastic moduli of thermoelectric SnTe1 ± x-ySiC nanoparticulate composites. J. Mater. Sci. 48, 8244 (2013)CrossRef R.D. Schmidt, E.D. Case, J.E. Ni, R.M. Trejo, E. Lara-Curzio, R.J. Korkosz, M.G. Kanatzidis, High-temperature elastic moduli of thermoelectric SnTe1 ± x-ySiC nanoparticulate composites. J. Mater. Sci. 48, 8244 (2013)CrossRef
18.
go back to reference J.H. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317 (2013)CrossRef J.H. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317 (2013)CrossRef
19.
go back to reference T. Akao, Y. Fujiwara, Y. Tarui, T. Onda, Z.C. Chen, Fabrication of Zn4Sb3 bulk thermoelectric materials reinforced with SiC whiskers. J. Electron. Mater. 43, 2047 (2014)CrossRef T. Akao, Y. Fujiwara, Y. Tarui, T. Onda, Z.C. Chen, Fabrication of Zn4Sb3 bulk thermoelectric materials reinforced with SiC whiskers. J. Electron. Mater. 43, 2047 (2014)CrossRef
20.
go back to reference Y.L. Wang, J.Y. Zhang, Z.W. Shen, M.Q. Yang, X.Q. Liu, W. Wang, Preparation of Bi2Te3/Nano-SiCcomposite thermoelectric films by electrodeposition. J. Electron. Mater. 44, 2166 (2015) Y.L. Wang, J.Y. Zhang, Z.W. Shen, M.Q. Yang, X.Q. Liu, W. Wang, Preparation of Bi2Te3/Nano-SiCcomposite thermoelectric films by electrodeposition. J. Electron. Mater. 44, 2166 (2015)
21.
go back to reference J.Y. Yang, Y.H. Chen, J.Y. Peng, X.L. Song, W. Zhu, J.F. Su, R.G. Chen, Synthesis of CoSb3 skutterudite by mechanical alloying. J. Alloys Compd. 375, 229 (2004)CrossRef J.Y. Yang, Y.H. Chen, J.Y. Peng, X.L. Song, W. Zhu, J.F. Su, R.G. Chen, Synthesis of CoSb3 skutterudite by mechanical alloying. J. Alloys Compd. 375, 229 (2004)CrossRef
22.
go back to reference M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175 (2010)CrossRef M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175 (2010)CrossRef
23.
go back to reference O. Kim-Hak, M. Soulier, P.D. Szkutnik, S. Saunier, J. Simon, D. Goeuriot, Microwave sintering and thermoelectric properties of p-type (Bi0.2Sb0.8)2Te3 powder. Powder Technol. 226, 231 (2012)CrossRef O. Kim-Hak, M. Soulier, P.D. Szkutnik, S. Saunier, J. Simon, D. Goeuriot, Microwave sintering and thermoelectric properties of p-type (Bi0.2Sb0.8)2Te3 powder. Powder Technol. 226, 231 (2012)CrossRef
24.
go back to reference K. Biswas, S. Muir, M.A. Subramanian, Rapid microwave synthesis of indium filled skutterudites: an energy efficient route to high performance thermoelectric materials. Mater. Res. Bull. 46, 2288 (2011)CrossRef K. Biswas, S. Muir, M.A. Subramanian, Rapid microwave synthesis of indium filled skutterudites: an energy efficient route to high performance thermoelectric materials. Mater. Res. Bull. 46, 2288 (2011)CrossRef
25.
go back to reference A.A. Ioannidou, M. Rull, M. Martin-Gonzallez, A. Moure, A. Jacquot, D. Niarchos, Microwave synthesis and characterization of the series Co1–xFexSb3 high temperature thermoelectric materials. J. Electron. Mater. 43, 2637 (2014)CrossRef A.A. Ioannidou, M. Rull, M. Martin-Gonzallez, A. Moure, A. Jacquot, D. Niarchos, Microwave synthesis and characterization of the series Co1–xFexSb3 high temperature thermoelectric materials. J. Electron. Mater. 43, 2637 (2014)CrossRef
26.
go back to reference G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of spark plasma sintering (sps), hot isostatic pressing (hip) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954 (2012)CrossRef G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of spark plasma sintering (sps), hot isostatic pressing (hip) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954 (2012)CrossRef
27.
go back to reference K.G. Liu, J.X. Zhang, D. Xiang, The exploration for synthesizing CoSb3 powder by mechanical alloying. J. Mater. Processing Technol. 184, 257 (2007)CrossRef K.G. Liu, J.X. Zhang, D. Xiang, The exploration for synthesizing CoSb3 powder by mechanical alloying. J. Mater. Processing Technol. 184, 257 (2007)CrossRef
28.
go back to reference J.Y. Peng, J.Y. Yang, X.L. Song, Y.H. Chen, T.J. Zhang, Effect of Fe substitution on the thermoelectric transport properties of CoSb3-based skutterudite compound. J. Alloys Compd. 426, 7 (2006)CrossRef J.Y. Peng, J.Y. Yang, X.L. Song, Y.H. Chen, T.J. Zhang, Effect of Fe substitution on the thermoelectric transport properties of CoSb3-based skutterudite compound. J. Alloys Compd. 426, 7 (2006)CrossRef
29.
go back to reference S.C. Ur, J.C. Kwon, I.H. Kim, Thermoelectric properties of Fe-doped CoSb3 prepared by mechanical alloying and vacuum hot pressing. J. Alloys Compd. 442, 358 (2007)CrossRef S.C. Ur, J.C. Kwon, I.H. Kim, Thermoelectric properties of Fe-doped CoSb3 prepared by mechanical alloying and vacuum hot pressing. J. Alloys Compd. 442, 358 (2007)CrossRef
30.
go back to reference Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloys Compd. 315, 193 (2001)CrossRef Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloys Compd. 315, 193 (2001)CrossRef
Metadata
Title
Thermoelectric properties of CoSb3 and CoSb3/SiC composites prepared by mechanical alloying and microwave sintering
Authors
Hanming Zhu
Shaojun Liang
Ting Ouyang
Song Yue
Jun Jiang
Publication date
29-03-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 14/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6824-7

Other articles of this Issue 14/2017

Journal of Materials Science: Materials in Electronics 14/2017 Go to the issue