Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

28-06-2022 | Original Research Article

Thermoelectric Properties of Titanium Carbide Filled Polypyrrole Hybrid Composites

Authors: Cesim Emre Ozturk, Volkan Ugraskan, Ozlem Yazici

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transition metal carbides (TMCs) have attracted the attention of many researchers as promising thermoelectric materials due to their excellent electrical, thermal, and chemical properties. Titanium carbide (TiC), a compound of titanium and carbon, is a valuable member of the family of TMCs; however, studies on the thermoelectric properties of this material are limited. In the present study, the effects of the addition of TiC on the thermoelectric properties of polypyrrole (PPy) were investigated for the first time. Firstly, TiC-filled PPy hybrid composites containing different weight ratios of TiC (0.5%, 1%, 3%, 5%, and 10% with respect to polymer) were prepared by in situ oxidative chemical polymerization. The composites were characterized using Fourier transform infrared-attenuated total reflectance spectroscopy, ultraviolet-visible spectroscopy, Brunauer–Emmett–Teller and Barrett-Joyner-Halenda methods, x-ray diffraction, and scanning electron microscopy (SEM). The electrical conductivity measurements indicated that the electrical conductivity significantly increased in direct proportion with the increasing amount of TiC and the electrical conductivity of the pristine PPy increased from 0.8 Scm−1 up to 160.2 Scm−1 with the addition of 10% TiC. Furthermore, the addition of TiC led to increase in the power factor from 0.0115 μW m−1K−2 to 1.732 μW m−1K−2 which is approximately 150 times higher than the pristine PPy. This study indicated that the addition of TiC remarkably contributed to the TE properties of PPy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Xu, X.-L. Shi, M. Dargusch, C. Di, J. Zou, and Z.-G. Chen, Conducting Polymer-Based Flexible Thermoelectric Materials and Devices: From Mechanisms to Applications. Prog. Mater. Sci. 121, 100840 (2021).CrossRef S. Xu, X.-L. Shi, M. Dargusch, C. Di, J. Zou, and Z.-G. Chen, Conducting Polymer-Based Flexible Thermoelectric Materials and Devices: From Mechanisms to Applications. Prog. Mater. Sci. 121, 100840 (2021).CrossRef
2.
go back to reference X. Cao, M. Zhang, Y. Yang, H. Deng, and Q. Fu, Thermoelectric PEDOT:PSS Sheet/SWCNTs Composites Films with Layered Structure. Compos. Commun. 27, 100869 (2021).CrossRef X. Cao, M. Zhang, Y. Yang, H. Deng, and Q. Fu, Thermoelectric PEDOT:PSS Sheet/SWCNTs Composites Films with Layered Structure. Compos. Commun. 27, 100869 (2021).CrossRef
3.
go back to reference Y. Shi, C. Sturm, and H. Kleinke, Chalcogenides as Thermoelectric Materials. J. Solid State Chem. 270, 273 (2019).CrossRef Y. Shi, C. Sturm, and H. Kleinke, Chalcogenides as Thermoelectric Materials. J. Solid State Chem. 270, 273 (2019).CrossRef
4.
go back to reference W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, and Y. Liu, New Trends, Strategies and Opportunities in Thermoelectric Materials: A Perspective. Mater. Today Phys. 1, 50 (2017).CrossRef W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, and Y. Liu, New Trends, Strategies and Opportunities in Thermoelectric Materials: A Perspective. Mater. Today Phys. 1, 50 (2017).CrossRef
5.
go back to reference G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, and A. Pakdel, A Review on Conductive Polymers and Their Hybrids for Flexible and Wearable Thermoelectric Applications. Mater. Today Phys. 18, 100402 (2021).CrossRef G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, and A. Pakdel, A Review on Conductive Polymers and Their Hybrids for Flexible and Wearable Thermoelectric Applications. Mater. Today Phys. 18, 100402 (2021).CrossRef
6.
go back to reference Y.S. Wudil, M.A. Gondal, M.A. Almessiere, and A.Q. Alsayoud, The Multi-Dimensional Approach to Synergistically Improve the Performance of Inorganic Thermoelectric Materials: A Critical Review. Arab. J. Chem. 14, 103103 (2021).CrossRef Y.S. Wudil, M.A. Gondal, M.A. Almessiere, and A.Q. Alsayoud, The Multi-Dimensional Approach to Synergistically Improve the Performance of Inorganic Thermoelectric Materials: A Critical Review. Arab. J. Chem. 14, 103103 (2021).CrossRef
7.
go back to reference S. Yang, P. Qiu, L. Chen, and X. Shi, Recent Developments in Flexible Thermoelectric Devices. Small Sci. 1, 2100005 (2021).CrossRef S. Yang, P. Qiu, L. Chen, and X. Shi, Recent Developments in Flexible Thermoelectric Devices. Small Sci. 1, 2100005 (2021).CrossRef
8.
go back to reference L. Zhang, X.-L. Shi, Y.-L. Yang, and Z.-G. Chen, Flexible Thermoelectric Materials and Devices: From Materials to Applications. Mater. Today 46, 62 (2021).CrossRef L. Zhang, X.-L. Shi, Y.-L. Yang, and Z.-G. Chen, Flexible Thermoelectric Materials and Devices: From Materials to Applications. Mater. Today 46, 62 (2021).CrossRef
9.
go back to reference R. Tian, C. Wan, N. Hayashi, T. Aoai, and K. Koumoto, Wearable and Flexible Thermoelectrics for Energy Harvesting. MRS Bull. 43, 193 (2018).CrossRef R. Tian, C. Wan, N. Hayashi, T. Aoai, and K. Koumoto, Wearable and Flexible Thermoelectrics for Energy Harvesting. MRS Bull. 43, 193 (2018).CrossRef
10.
go back to reference Y. Du, J. Xu, B. Paul, and P. Eklund, Flexible Thermoelectric Materials and Devices. Appl. Mater. Today 12, 366 (2018).CrossRef Y. Du, J. Xu, B. Paul, and P. Eklund, Flexible Thermoelectric Materials and Devices. Appl. Mater. Today 12, 366 (2018).CrossRef
11.
go back to reference L. Liang, J. Fan, M. Wang, G. Chen, and G. Sun, Ternary Thermoelectric Composites of Polypyrrole/PEDOT:PSS/Carbon Nanotube with Unique Layered Structure Prepared by One-Dimensional Polymer Nanostructure as Template. Compos. Sci. Technol. 187, 107948 (2020).CrossRef L. Liang, J. Fan, M. Wang, G. Chen, and G. Sun, Ternary Thermoelectric Composites of Polypyrrole/PEDOT:PSS/Carbon Nanotube with Unique Layered Structure Prepared by One-Dimensional Polymer Nanostructure as Template. Compos. Sci. Technol. 187, 107948 (2020).CrossRef
12.
go back to reference A. Bibi and A. Shakoor, Electrical Properties and Characteristics of Polypyrrole/Cadmium Oxide for Thermoelectric Applications. Polym. Sci. Ser. A 63, 585 (2021).CrossRef A. Bibi and A. Shakoor, Electrical Properties and Characteristics of Polypyrrole/Cadmium Oxide for Thermoelectric Applications. Polym. Sci. Ser. A 63, 585 (2021).CrossRef
13.
go back to reference M. Yin, H. Du, Y. Liu, L. Li, and X. Yu, Improved Thermoelectric Performance of Flexible Film Based on Polypyrrole/Silver Nanocomposites. J. Electron. Mater. 51, 1061 (2022).CrossRef M. Yin, H. Du, Y. Liu, L. Li, and X. Yu, Improved Thermoelectric Performance of Flexible Film Based on Polypyrrole/Silver Nanocomposites. J. Electron. Mater. 51, 1061 (2022).CrossRef
14.
go back to reference H. Zhou, X. Li, C. Gao, F. Yang, X. Ye, Y. Liu, and L. Wang, The Ameliorative Thermoelectric Performance Induced by Heteroatom for Dithiophene Cyclopentadiene-Based Polymers and Carbon Nanotubes Composite Films. Compos. Sci. Technol. 201, 108518 (2021).CrossRef H. Zhou, X. Li, C. Gao, F. Yang, X. Ye, Y. Liu, and L. Wang, The Ameliorative Thermoelectric Performance Induced by Heteroatom for Dithiophene Cyclopentadiene-Based Polymers and Carbon Nanotubes Composite Films. Compos. Sci. Technol. 201, 108518 (2021).CrossRef
15.
go back to reference M. Xiang, Z. Yang, J. Chen, S. Zhou, W. Wei, and S. Dong, Polymeric Thermoelectric Composites by Polypyrrole and Cheap Reduced Graphene Oxide in Towel-Gourd Sponge Fibers. ACS Omega 5, 29955 (2020).CrossRef M. Xiang, Z. Yang, J. Chen, S. Zhou, W. Wei, and S. Dong, Polymeric Thermoelectric Composites by Polypyrrole and Cheap Reduced Graphene Oxide in Towel-Gourd Sponge Fibers. ACS Omega 5, 29955 (2020).CrossRef
16.
go back to reference N. Nandihalli, C.-J. Liu, and T. Mori, Polymer Based Thermoelectric Nanocomposite Materials and Devices: Fabrication and Characteristics. Nano Energy 78, 105186 (2020).CrossRef N. Nandihalli, C.-J. Liu, and T. Mori, Polymer Based Thermoelectric Nanocomposite Materials and Devices: Fabrication and Characteristics. Nano Energy 78, 105186 (2020).CrossRef
17.
go back to reference W. Wang and A.H. Jayatissa, Comparison Study of Graphene Based Conductive Nanocomposites Using Poly(Methyl Methacrylate) and Polypyrrole as Matrix Materials. J. Mater. Sci. Mater. Electron. 26, 7780 (2015).CrossRef W. Wang and A.H. Jayatissa, Comparison Study of Graphene Based Conductive Nanocomposites Using Poly(Methyl Methacrylate) and Polypyrrole as Matrix Materials. J. Mater. Sci. Mater. Electron. 26, 7780 (2015).CrossRef
18.
go back to reference C. Kim and D.H. Lopez, Effects of the Interface between Inorganic and Organic Components in a Bi2Te3–Polypyrrole Bulk Composite on Its Thermoelectric Performance. Materials 14, 3080 (2021).CrossRef C. Kim and D.H. Lopez, Effects of the Interface between Inorganic and Organic Components in a Bi2Te3–Polypyrrole Bulk Composite on Its Thermoelectric Performance. Materials 14, 3080 (2021).CrossRef
19.
go back to reference M. Longhin, M. Khalil, L. Abbassi, M. Beaudhuin, P. Papet, and R. Viennois, Enhanced Thermoelectric Properties in Polypyrrole Composites with Silicide Fillers. Mater. Lett. 264, 127373 (2020).CrossRef M. Longhin, M. Khalil, L. Abbassi, M. Beaudhuin, P. Papet, and R. Viennois, Enhanced Thermoelectric Properties in Polypyrrole Composites with Silicide Fillers. Mater. Lett. 264, 127373 (2020).CrossRef
20.
go back to reference A. Debnath, K. Deb, K. Sarkar, and B. Saha, Low Interfacial Energy Barrier and Improved Thermoelectric Performance in Te-Incorporated Polypyrrole. J. Phys. Chem. C 125, 168 (2021).CrossRef A. Debnath, K. Deb, K. Sarkar, and B. Saha, Low Interfacial Energy Barrier and Improved Thermoelectric Performance in Te-Incorporated Polypyrrole. J. Phys. Chem. C 125, 168 (2021).CrossRef
21.
go back to reference Y. Xiao, J.-Y. Hwang, and Y.-K. Sun, Transition Metal Carbide-Based Materials: Synthesis and Applications in Electrochemical Energy Storage. J. Mater. Chem. A 4, 10379 (2016).CrossRef Y. Xiao, J.-Y. Hwang, and Y.-K. Sun, Transition Metal Carbide-Based Materials: Synthesis and Applications in Electrochemical Energy Storage. J. Mater. Chem. A 4, 10379 (2016).CrossRef
22.
go back to reference A. M. Shul’pekov, G. V. Lyamina, Electrical and Thermomechanical Properties of Materials Based on Nonstoichiometric Titanium Carbide Prepared by Self-Propagating High-Temperature Synthesis. Inorg. Mater. 47, 722 (2011).CrossRef A. M. Shul’pekov, G. V. Lyamina, Electrical and Thermomechanical Properties of Materials Based on Nonstoichiometric Titanium Carbide Prepared by Self-Propagating High-Temperature Synthesis. Inorg. Mater. 47, 722 (2011).CrossRef
23.
go back to reference Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H.J. Fan, Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Adv. Sci. 3, 1500286 (2016).CrossRef Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H.J. Fan, Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Adv. Sci. 3, 1500286 (2016).CrossRef
24.
go back to reference Q. Guo, T. Wu, L. Liu, H. Hou, S. Chen, and L. Wang, Flexible and Conductive Titanium Carbide–Carbon Nanofibers for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Mater. Chem. B 6, 4610 (2018).CrossRef Q. Guo, T. Wu, L. Liu, H. Hou, S. Chen, and L. Wang, Flexible and Conductive Titanium Carbide–Carbon Nanofibers for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Mater. Chem. B 6, 4610 (2018).CrossRef
25.
go back to reference Q. Guo, L. Liu, T. Wu, Q. Wang, H. Wang, J. Liang, and S. Chen, Flexible and Conductive Titanium Carbide–Carbon Nanofibers for High-Performance Glucose Biosensing. Electrochim. Acta 281, 517 (2018).CrossRef Q. Guo, L. Liu, T. Wu, Q. Wang, H. Wang, J. Liang, and S. Chen, Flexible and Conductive Titanium Carbide–Carbon Nanofibers for High-Performance Glucose Biosensing. Electrochim. Acta 281, 517 (2018).CrossRef
26.
go back to reference D.T. Morelli, Thermal Conductivity and Thermoelectric Power of Titanium Carbide Single Crystals. Phys. Rev. B 44, 5453 (1991).CrossRef D.T. Morelli, Thermal Conductivity and Thermoelectric Power of Titanium Carbide Single Crystals. Phys. Rev. B 44, 5453 (1991).CrossRef
27.
go back to reference R.G. Lye, The Thermoelectric Power of Titanium Carbide. J. Phys. Chem. Solids 26, 407 (1965).CrossRef R.G. Lye, The Thermoelectric Power of Titanium Carbide. J. Phys. Chem. Solids 26, 407 (1965).CrossRef
28.
go back to reference K. Ahmed, F. Kanwal, S.M. Ramay, S. Atiq, R. Rehman, S.M. Ali, and N.S. Alzayed, Synthesis and Characterization of BaTiO3/Polypyrrole Composites with Exceptional Dielectric Behaviour. Polymers 10, 1273 (2018).CrossRef K. Ahmed, F. Kanwal, S.M. Ramay, S. Atiq, R. Rehman, S.M. Ali, and N.S. Alzayed, Synthesis and Characterization of BaTiO3/Polypyrrole Composites with Exceptional Dielectric Behaviour. Polymers 10, 1273 (2018).CrossRef
29.
go back to reference Z. Pinwen, H. Youliang, L. Bingbing, and Z. Guangtian, Titanium Carbide-Carbon Composite Nanofibers Prepared by Electrospinning Polyacrylonitrile. Chem. Lett. 38, 784 (2009).CrossRef Z. Pinwen, H. Youliang, L. Bingbing, and Z. Guangtian, Titanium Carbide-Carbon Composite Nanofibers Prepared by Electrospinning Polyacrylonitrile. Chem. Lett. 38, 784 (2009).CrossRef
30.
go back to reference R. Swetha, M.U. Kumar, and L. Kumari, Synthesis and characterization of polypyrrole-Ce0.05CoSb3 nanocomposites. Mater. Today: Proc. 46, 2934 (2021). R. Swetha, M.U. Kumar, and L. Kumari, Synthesis and characterization of polypyrrole-Ce0.05CoSb3 nanocomposites. Mater. Today: Proc. 46, 2934 (2021).
31.
go back to reference Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li, S. Du, Y.-H. Han, J. Lee, and Q. Huang, Facile Preparation of In Situ Coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance. RSC Adv. 7, 24698 (2017).CrossRef Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li, S. Du, Y.-H. Han, J. Lee, and Q. Huang, Facile Preparation of In Situ Coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance. RSC Adv. 7, 24698 (2017).CrossRef
32.
go back to reference J. Kazemi and V. Javanbakht, Alginate Beads Impregnated with Magnetic Chitosan@Zeolite Nanocomposite for Cationic Methylene Blue Dye Removal from Aqueous Solution. Int. J. Biol. Macromol. 154, 1426 (2020).CrossRef J. Kazemi and V. Javanbakht, Alginate Beads Impregnated with Magnetic Chitosan@Zeolite Nanocomposite for Cationic Methylene Blue Dye Removal from Aqueous Solution. Int. J. Biol. Macromol. 154, 1426 (2020).CrossRef
33.
go back to reference Z. Wang, X. Jiang, M. Pan, and Y. Shi, Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed Ordos Basin. China. Minerals 10, 377 (2020). Z. Wang, X. Jiang, M. Pan, and Y. Shi, Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed Ordos Basin. China. Minerals 10, 377 (2020).
34.
go back to reference S. Yu, J. Bo, L. Fengli, and L. Jiegang, Structure and Fractal Characteristic of Micro- and Meso-Pores in Low, Middle-Rank Tectonic Deformed Coals by CO2 and N2 Adsorption. Micropor. Mesopor. Mater. 253, 191 (2017).CrossRef S. Yu, J. Bo, L. Fengli, and L. Jiegang, Structure and Fractal Characteristic of Micro- and Meso-Pores in Low, Middle-Rank Tectonic Deformed Coals by CO2 and N2 Adsorption. Micropor. Mesopor. Mater. 253, 191 (2017).CrossRef
35.
go back to reference Y. Fu, Y.-S. Su, and A. Manthiram, Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. J. Electrochem. Soc. 159, A1420 (2012).CrossRef Y. Fu, Y.-S. Su, and A. Manthiram, Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. J. Electrochem. Soc. 159, A1420 (2012).CrossRef
36.
go back to reference C. Xu, J. Sun, and L. Gao, Synthesis of Novel Hierarchical Graphene/Polypyrrolenanosheet Composites and Their Superior Electrochemical Performance. J. Mater. Chem. 21, 11253 (2011).CrossRef C. Xu, J. Sun, and L. Gao, Synthesis of Novel Hierarchical Graphene/Polypyrrolenanosheet Composites and Their Superior Electrochemical Performance. J. Mater. Chem. 21, 11253 (2011).CrossRef
37.
go back to reference H. Foratirad, H.R. Baharvandi, and M.G. Maragheh, Chemo-Rheological Behavior of Aqueous Titanium Carbide Suspension and Evaluation of the Gelcasted Green Body Properties. Mat. Res. 20, 175 (2016).CrossRef H. Foratirad, H.R. Baharvandi, and M.G. Maragheh, Chemo-Rheological Behavior of Aqueous Titanium Carbide Suspension and Evaluation of the Gelcasted Green Body Properties. Mat. Res. 20, 175 (2016).CrossRef
38.
go back to reference S. Maruthamuthu, J. Chandrasekaran, D. Manoharan, and R. Magesh, Conductivity and Dielectric Analysis of Nanocolloidal Polypyrrole Particles Functionalized with Higher Weight Percentage of Poly(styrene sulfonate) Using the Dispersion Polymerization Method. J. Polym. Eng. 37, 481 (2017).CrossRef S. Maruthamuthu, J. Chandrasekaran, D. Manoharan, and R. Magesh, Conductivity and Dielectric Analysis of Nanocolloidal Polypyrrole Particles Functionalized with Higher Weight Percentage of Poly(styrene sulfonate) Using the Dispersion Polymerization Method. J. Polym. Eng. 37, 481 (2017).CrossRef
39.
go back to reference A. Pasha, S. Khasim, A.A.A. Darwish, T.A. Hamdalla, and S.A. Al-Ghamdi, High Performance Organic Coatings of Polypyrrole Embedded with Manganese Iron Oxide Nanoparticles for Corrosion Protection of Conductive Copper Surface. J. Inorg. Organomet. Polym. 32, 499 (2022).CrossRef A. Pasha, S. Khasim, A.A.A. Darwish, T.A. Hamdalla, and S.A. Al-Ghamdi, High Performance Organic Coatings of Polypyrrole Embedded with Manganese Iron Oxide Nanoparticles for Corrosion Protection of Conductive Copper Surface. J. Inorg. Organomet. Polym. 32, 499 (2022).CrossRef
40.
go back to reference N. Masonnet, A. Carella, A. de Geyer, J. Faure-Vincent, and J.-P. Simonato, Metallic Behaviour of Acid Doped Highly Conductive Polymers. Chem. Sci. 6, 412 (2015).CrossRef N. Masonnet, A. Carella, A. de Geyer, J. Faure-Vincent, and J.-P. Simonato, Metallic Behaviour of Acid Doped Highly Conductive Polymers. Chem. Sci. 6, 412 (2015).CrossRef
41.
go back to reference H. Ju, D. Park, and J. Kim, Thermoelectric Enhancement in Multilayer Thin-Films of tin Chalcogenide Nanosheets/Conductive Polymers. Nanoscale 11, 16114 (2019).CrossRef H. Ju, D. Park, and J. Kim, Thermoelectric Enhancement in Multilayer Thin-Films of tin Chalcogenide Nanosheets/Conductive Polymers. Nanoscale 11, 16114 (2019).CrossRef
42.
go back to reference H. Song, K. Cai, J. Wang, and S. Shen, Influence of Polymerization Method on the Thermoelectric Properties of Multi-walled Carbon Nanotubes/Polypyrrole Composites. Synth. Met. 211, 55 (2016).CrossRef H. Song, K. Cai, J. Wang, and S. Shen, Influence of Polymerization Method on the Thermoelectric Properties of Multi-walled Carbon Nanotubes/Polypyrrole Composites. Synth. Met. 211, 55 (2016).CrossRef
43.
go back to reference Y. Du, J. Xu, and T. Lin, Single-walled Carbon Nanotube / Polypyrrole Thermoelectric Composite Materials. IOP Conf. Ser. Earth Environ. Sci. 108, 022040 (2018).CrossRef Y. Du, J. Xu, and T. Lin, Single-walled Carbon Nanotube / Polypyrrole Thermoelectric Composite Materials. IOP Conf. Ser. Earth Environ. Sci. 108, 022040 (2018).CrossRef
44.
go back to reference Z. Zhang, G. Chen, H. Wang, and W. Zhai, Enhanced Thermoelectric Property by Construction of Nanocomposite 3D Interconnected Architecture Consisting of Graphene Nanolayers Sandwiched by Polypyrrole Nanowires. J. Mater. Chem. C 3, 1649 (2015).CrossRef Z. Zhang, G. Chen, H. Wang, and W. Zhai, Enhanced Thermoelectric Property by Construction of Nanocomposite 3D Interconnected Architecture Consisting of Graphene Nanolayers Sandwiched by Polypyrrole Nanowires. J. Mater. Chem. C 3, 1649 (2015).CrossRef
Metadata
Title
Thermoelectric Properties of Titanium Carbide Filled Polypyrrole Hybrid Composites
Authors
Cesim Emre Ozturk
Volkan Ugraskan
Ozlem Yazici
Publication date
28-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09776-4

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

Infinite-Melt Vertical Liquid-Phase Epitaxy of HgCdTe from Hg Solution: from VLWIR to SWIR

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

XBn and XBp Detectors Based on Type II Superlattices