Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Thermonuclear Fusion

Author : Begoña Gómez-Ferrer

Published in: Resistivity Recovery in Fe and FeCr alloys

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The motivation of this work arises from the need of developing new technologies in order to build the future nuclear fusion reactors. Section 1.1 is devoted to provide an overview of fusion energy, showing the interest of its development and the key problems that need to be overcome for this purpose. Section 1.2 introduces specifically the problematic of radiation damage in the constituent materials of fusion reactors. Next, Sect. 1.3 explains the strong commitment of fusion research community in the development of modelling and experimental validation approach, as a useful tool for radiation resistant materials development in the medium term. Finally, Sect. 1.4 introduces the specific interest and problematic of structural materials which can be modelled to a first approximation as binary FeCrx alloys and which are the object of study of this work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the future, it has to be noted that there are other reactions, indicated in the text, which use 3He, Li or B and are completely free of radioactivity. Note that lithium and boron are safe and abundant elements.
 
2
Gamma radiation is originated in fusion reactors from different processes like:
  • D + p → 3He + γ (5.5 MeV)
  • T + p → 4He + γ (20 MeV)
  • D + D → 4He + γ (24 MeV)
  • D + T → 5He + γ (17 MeV)
  • 9Be + 4He → n + 12C + γ (4.44 MeV)
  • 10B + 4He → p + 13C + y (3.1, 3.7, 3.85 MeV)
+… every nuclear reaction between the generated neutrons with the constituent reactor materials.
 
3
Although the real problem due to T leakage would be its inhalation.
 
4
In the case of magnetic confinement fusion. Inertial confinement fusion (ICF) is also a developing energy. In ICF reactors D + T ignition will be produced by means of concentration of powerful laser beams in the central point of a vacuum chamber where the fuel pellet will be placed.
 
5
Demonstration Power Plant [6].
 
6
The model alloys Fe1−x–Crx are the base of the reduced-activation ferritic/martensitic steels which have been chosen as main candidates to build the structure of the first wall in future fusion reactors.
 
7
RR is a very specific experimental technique traditionally used to study the mobility and kinetics of simple defects in metals by means of the follow-up of the residual resistivity of a sample along an isochronal step-annealing after irradiation at cryogenic temperatures.
 
8
Also liquid breeder blanket technology is being considered as an alternative to solid breeders in future fusion devices.
 
9
Although it is more and more accepted in the scientific community that this analogy is not straightforward given the effects of injected interstitials—in swelling and embrittlement—as well as dose rate effects in the evolution of the microstructure.
 
10
Nanocomposited oxide-dispersion-strengthened (ODS) ferritic steels.
 
Literature
1.
go back to reference Chen FF (2011) An indispensable truth: how fusion power can save the planet. Springer, New YorkCrossRef Chen FF (2011) An indispensable truth: how fusion power can save the planet. Springer, New YorkCrossRef
2.
go back to reference International Energy Agency (2015) World energy outlook 2015. OECD, Paris International Energy Agency (2015) World energy outlook 2015. OECD, Paris
3.
go back to reference Dolan TJ (1982) Fusion research: principles, experiments and technology. Pergamon Press, New York Dolan TJ (1982) Fusion research: principles, experiments and technology. Pergamon Press, New York
7.
go back to reference ASTM E693—12 (2012) Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID). ASTM International ASTM E693—12 (2012) Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID). ASTM International
18.
go back to reference Dusek M, Hunt C (2002) Test methods for evaluating the reliability of PCB finishes using lead-free alloys—a guide Dusek M, Hunt C (2002) Test methods for evaluating the reliability of PCB finishes using lead-free alloys—a guide
19.
go back to reference Rossiter PL (1987) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge [Cambridgeshire], New York Rossiter PL (1987) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge [Cambridgeshire], New York
20.
go back to reference Mirebeau I, Hennion M, Parette G (1984) First measurement of short-range-order inversion as a function of concentration in a transition alloy. Phys Rev Lett 53:687–690. doi:10.1103/PhysRevLett.53.687 Mirebeau I, Hennion M, Parette G (1984) First measurement of short-range-order inversion as a function of concentration in a transition alloy. Phys Rev Lett 53:687–690. doi:10.​1103/​PhysRevLett.​53.​687
23.
go back to reference Blewitt TH, Coltman RR, Klabunde CE (1960) Annealing kinetics of neutron-irradiated aluminium and copper. Aust J Phys 13:347–353. doi:10.1071/PH600347a Blewitt TH, Coltman RR, Klabunde CE (1960) Annealing kinetics of neutron-irradiated aluminium and copper. Aust J Phys 13:347–353. doi:10.​1071/​PH600347a
24.
go back to reference Tesk JA, Jones EC, Kauffman JW (1964) Stage I recovery spectrum of pure copper irradiated with electrons over the range 1.25 to 3.25 MeV. Phys Rev 133:A288–A293. doi:10.1103/PhysRev.133.A288 Tesk JA, Jones EC, Kauffman JW (1964) Stage I recovery spectrum of pure copper irradiated with electrons over the range 1.25 to 3.25 MeV. Phys Rev 133:A288–A293. doi:10.​1103/​PhysRev.​133.​A288
25.
26.
go back to reference Omar AM (1978) Low temperature irradiation of iron, zirconium and copper by 10 to 16 MeV protons. Mater Sci, McMaster University Omar AM (1978) Low temperature irradiation of iron, zirconium and copper by 10 to 16 MeV protons. Mater Sci, McMaster University
27.
go back to reference Takaki S, Fuss J, Kuglers H et al (1983) The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat Eff 79:87–122. doi:10.1080/00337578308207398 Takaki S, Fuss J, Kuglers H et al (1983) The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat Eff 79:87–122. doi:10.​1080/​0033757830820739​8
31.
go back to reference Matsui H, Takehana S, Guinan MW (1988) Resistivity recovery in high purity iron after fission- and fusion- neutron irradiation. J Nucl Mater 155–157:1284–1289CrossRef Matsui H, Takehana S, Guinan MW (1988) Resistivity recovery in high purity iron after fission- and fusion- neutron irradiation. J Nucl Mater 155–157:1284–1289CrossRef
32.
go back to reference Nikolaev AL, Arbuzov VL, Davletshin AE (1997) On the effect of impurities on resistivity recovery, short-range ordering, and defect migration in electron-irradiated concentrated Fe–Cr alloys. J Phys Condens Matter 9:4385–4402. doi:10.1088/0953-8984/9/21/006 Nikolaev AL, Arbuzov VL, Davletshin AE (1997) On the effect of impurities on resistivity recovery, short-range ordering, and defect migration in electron-irradiated concentrated Fe–Cr alloys. J Phys Condens Matter 9:4385–4402. doi:10.​1088/​0953-8984/​9/​21/​006
33.
34.
37.
go back to reference Stork D, et al. (2012) Assessment of the EU R&D programme on DEMO Structural and High-Heat Flux Materials Stork D, et al. (2012) Assessment of the EU R&D programme on DEMO Structural and High-Heat Flux Materials
38.
go back to reference Linsmeier C, Fu C-C, Kaprolat A et al (2013) Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—a European effort to accelerate fusion materials development. J Nucl Mater. doi:10.1016/j.jnucmat.2013.04.042 Linsmeier C, Fu C-C, Kaprolat A et al (2013) Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—a European effort to accelerate fusion materials development. J Nucl Mater. doi:10.​1016/​j.​jnucmat.​2013.​04.​042
40.
go back to reference Maury F, Lucasson P, Lucasson A et al (1987) A study of irradiated FeCr alloys: deviations from Matthiessen rule and interstitial migration. J Phys F: Met Phys 17:1143–1165CrossRef Maury F, Lucasson P, Lucasson A et al (1987) A study of irradiated FeCr alloys: deviations from Matthiessen rule and interstitial migration. J Phys F: Met Phys 17:1143–1165CrossRef
41.
go back to reference Dimitrov C, Benkaddour A, Corbel C, Moser P (1991) Properties of point-defects in model ferritic steels. Ann Chim-Sci Mater 16:319–324 Dimitrov C, Benkaddour A, Corbel C, Moser P (1991) Properties of point-defects in model ferritic steels. Ann Chim-Sci Mater 16:319–324
42.
go back to reference Fu C-C, Dalla Torre J, Willaime F et al (2005) Multiscale modelling on defect kinetics in irradiated iron. Nat Mater 4:68–74CrossRef Fu C-C, Dalla Torre J, Willaime F et al (2005) Multiscale modelling on defect kinetics in irradiated iron. Nat Mater 4:68–74CrossRef
44.
go back to reference Vehanen A, Hautojärvi P, Johansson J et al (1982) Vacancies and carbon impurities in α- iron: electron irradiation. Phys Rev B 25:762–780CrossRef Vehanen A, Hautojärvi P, Johansson J et al (1982) Vacancies and carbon impurities in α- iron: electron irradiation. Phys Rev B 25:762–780CrossRef
46.
go back to reference International Energy Agency, SourceOECD (Online service) (2009) World energy outlook 2009. International Energy Agency, Paris International Energy Agency, SourceOECD (Online service) (2009) World energy outlook 2009. International Energy Agency, Paris
Metadata
Title
Thermonuclear Fusion
Author
Begoña Gómez-Ferrer
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-38857-1_1

Premium Partners