Skip to main content
Top
Published in: Journal of Computational Electronics 3/2020

22-04-2020

Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs)

Authors: T. Venish Kumar, N. B. Balamurugan

Published in: Journal of Computational Electronics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple physics-based three-dimensional (3-D) analytical model for AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs) is presented. The model accurately predicts the short-channel effects (SCEs) in the channel region for various device dimensions, viz. channel length and width, by solving the three-dimensional Poisson equation. The effects of the barrier layer (AlInSb) thickness and the high doping concentration on the threshold voltage are also considered. Analytical expressions for the surface potential and threshold voltage are derived, and the analytical results closely match those obtained from Sentaurus technology computer-aided design (TCAD) simulations. The drain current and transconductance of the AlInSb/AlSb/InSb double-gate HEMT device are compared with experimental data obtained for a quantum-well field-effect transistor (QWFET). The proposed AlInSb/AlSb/InSb double-gate HEMT shows excellent properties for use in high-speed and low-power applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Critchlow, D.L.: MOSFET scaling-the driver of VLSI technology. Proc. IEEE 87(4), 659–667 (1999)CrossRef Critchlow, D.L.: MOSFET scaling-the driver of VLSI technology. Proc. IEEE 87(4), 659–667 (1999)CrossRef
2.
go back to reference Ross, R.L., Svensson, S.P., Lugli, P.: Pseudomorphic HEMT Technology and Applications. Springer, New York (1996)CrossRef Ross, R.L., Svensson, S.P., Lugli, P.: Pseudomorphic HEMT Technology and Applications. Springer, New York (1996)CrossRef
3.
go back to reference William, L.: Fundamentals of III–V Devices HBT’s, MESFETs, and HFETs/HEMTs. Books Express, Seller (1999) William, L.: Fundamentals of III–V Devices HBT’s, MESFETs, and HFETs/HEMTs. Books Express, Seller (1999)
4.
go back to reference Dingle, R., Störmer, H.L., Gossard, A.C., Wiegmann, W.: Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Am. Inst. Phys. 33(7), 665–667 (1978) Dingle, R., Störmer, H.L., Gossard, A.C., Wiegmann, W.: Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Am. Inst. Phys. 33(7), 665–667 (1978)
5.
go back to reference Adachi, S.: Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. Wiley, Hoboken (2009)CrossRef Adachi, S.: Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. Wiley, Hoboken (2009)CrossRef
6.
go back to reference Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, M., Gupta, R.S.: Analytical modeling and simulation of subthreshold behavior in nanoscale dual material gate AlGaN/GaN HEMT. Superlatt. Microstruct. 44(1), 37–53 (2008)CrossRef Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, M., Gupta, R.S.: Analytical modeling and simulation of subthreshold behavior in nanoscale dual material gate AlGaN/GaN HEMT. Superlatt. Microstruct. 44(1), 37–53 (2008)CrossRef
7.
go back to reference Kumar, S.P., Agrawal, A., Kabra, S., Gupta, M., Gupta, R.S.: An analysis for AlGaN/GaN modulation doped field effect transistor using accurate velocity-field dependence for high power microwave frequency applications. Microelectr. J. 37(11), 1339–1346 (2006)CrossRef Kumar, S.P., Agrawal, A., Kabra, S., Gupta, M., Gupta, R.S.: An analysis for AlGaN/GaN modulation doped field effect transistor using accurate velocity-field dependence for high power microwave frequency applications. Microelectr. J. 37(11), 1339–1346 (2006)CrossRef
8.
go back to reference Bin Kashem, M.T., Subrina, S.: Analytical modeling of channel potential and threshold voltage of triple material gate AlGaN/GaN HEMT including trapped and polarization-induced charges. Int. J. Numer. Model Electron Netw. Dev. Fields 32(1), 2476 (2019)CrossRef Bin Kashem, M.T., Subrina, S.: Analytical modeling of channel potential and threshold voltage of triple material gate AlGaN/GaN HEMT including trapped and polarization-induced charges. Int. J. Numer. Model Electron Netw. Dev. Fields 32(1), 2476 (2019)CrossRef
10.
go back to reference Ashley, T., Buckle, L., Datta, S., Emeny, M.T., Hayes, D.G., Hilton, K.P., Jefferies, R., Martin, T.: Heterogeneous InSb quantum well transistors on silicon for ultra-high-speed, low power logic applications. IEEE Electron. Lett. 43(14), 779 (2007)CrossRef Ashley, T., Buckle, L., Datta, S., Emeny, M.T., Hayes, D.G., Hilton, K.P., Jefferies, R., Martin, T.: Heterogeneous InSb quantum well transistors on silicon for ultra-high-speed, low power logic applications. IEEE Electron. Lett. 43(14), 779 (2007)CrossRef
11.
go back to reference Ashley, T., et al.: InSb-based Quantum Well Transistors for High Speed, Low Power Applications. Growth, Lakeland (2005) Ashley, T., et al.: InSb-based Quantum Well Transistors for High Speed, Low Power Applications. Growth, Lakeland (2005)
12.
go back to reference Mishima, T.D., Edirisooriya, M., Santos, M.B.: Reduction of microtwin defects for high-electron-mobility InSb quantum wells. Appl. Phys. Lett. 91(6), 26106 (2007)CrossRef Mishima, T.D., Edirisooriya, M., Santos, M.B.: Reduction of microtwin defects for high-electron-mobility InSb quantum wells. Appl. Phys. Lett. 91(6), 26106 (2007)CrossRef
13.
go back to reference Pooley, O.J., et al.: Quantum well mobility and the effect of gate dielectrics in remote doped InSb/AlxIn1-xSb heterostructures. Semicond. Sci. Technol. 25(12), 125005 (2010)CrossRef Pooley, O.J., et al.: Quantum well mobility and the effect of gate dielectrics in remote doped InSb/AlxIn1-xSb heterostructures. Semicond. Sci. Technol. 25(12), 125005 (2010)CrossRef
14.
go back to reference Zhang, Y., Zhang, Y., Wang, C., Zeng, Y.: Transport properties in AlInSb/InAsSb heterostructures. J. Appl. Phys. 114(24), 243710 (2013)CrossRef Zhang, Y., Zhang, Y., Wang, C., Zeng, Y.: Transport properties in AlInSb/InAsSb heterostructures. J. Appl. Phys. 114(24), 243710 (2013)CrossRef
15.
go back to reference Vasallo, B., Wichmann, N., Bollaert, S., et al.: Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron Devices 54(11), 2815–2822 (2007)CrossRef Vasallo, B., Wichmann, N., Bollaert, S., et al.: Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron Devices 54(11), 2815–2822 (2007)CrossRef
16.
go back to reference Awano, Y., Kosugi, M., Kosemura, K., Mimura, T., Abe, M.: Short-channel effects in subquarter-micrometer-gate HEMT’s: simulation and experiment. IEEE Trans. Electron Devices 36(10), 2260–2266 (1989)CrossRef Awano, Y., Kosugi, M., Kosemura, K., Mimura, T., Abe, M.: Short-channel effects in subquarter-micrometer-gate HEMT’s: simulation and experiment. IEEE Trans. Electron Devices 36(10), 2260–2266 (1989)CrossRef
18.
go back to reference Rathi, S., Jogi, J., Gupta, M., Gupta, R.S.: Modeling of hetero-interface potential and threshold voltage for tied and separate nanoscale InAlAs-InGaAs symmetric double-gate HEMT. Microelectron. Reliab. 49(12), 1508–1514 (2009)CrossRef Rathi, S., Jogi, J., Gupta, M., Gupta, R.S.: Modeling of hetero-interface potential and threshold voltage for tied and separate nanoscale InAlAs-InGaAs symmetric double-gate HEMT. Microelectron. Reliab. 49(12), 1508–1514 (2009)CrossRef
19.
go back to reference Kumar, S.P., Agrawal, A., Chaujar, R., Kabra, S., Gupta, M., Gupta, R.S.: Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson’s equation. Microelectron. J. 38(10–11), 1013–1020 (2007)CrossRef Kumar, S.P., Agrawal, A., Chaujar, R., Kabra, S., Gupta, M., Gupta, R.S.: Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson’s equation. Microelectron. J. 38(10–11), 1013–1020 (2007)CrossRef
20.
go back to reference Delhaye, G., Desplanque, L., Wallart, X.: Preliminary investigations on the Te-doped AlInSb/GaInSb heterostructures for high electron mobility transistor (HEMT) applications. In: International Conference on Indium Phosphide and Related Materials, pp. 1–3. (2008). Delhaye, G., Desplanque, L., Wallart, X.: Preliminary investigations on the Te-doped AlInSb/GaInSb heterostructures for high electron mobility transistor (HEMT) applications. In: International Conference on Indium Phosphide and Related Materials, pp. 1–3. (2008).
21.
go back to reference Kroemer, H.: The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E 20(3–4), 196–203 (2004)CrossRef Kroemer, H.: The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E 20(3–4), 196–203 (2004)CrossRef
22.
go back to reference Sentaurus Device User Guide. Synopsys Inc., Version K-2015.06, June 2015. Sentaurus Device User Guide. Synopsys Inc., Version K-2015.06, June 2015.
23.
go back to reference Kreyzig, E.: Advanced Engineering Mathematics, 7th edn. Wiley, New York (1993) Kreyzig, E.: Advanced Engineering Mathematics, 7th edn. Wiley, New York (1993)
24.
go back to reference Pierret, R.F., Lundstrom, M.S.: Correspondence between MOS and modulation-doped structures. IEEE Trans. Electron Devices 31(3), 383–385 (1984)CrossRef Pierret, R.F., Lundstrom, M.S.: Correspondence between MOS and modulation-doped structures. IEEE Trans. Electron Devices 31(3), 383–385 (1984)CrossRef
25.
go back to reference Karmalkar, S.: A new equivalent MOSFET representation of a HEMT to analytically model nonlinear charge control for simulation of HEMT devices and circuits. IEEE Trans. Electron Devices 44(5), 862–868 (1997)CrossRef Karmalkar, S.: A new equivalent MOSFET representation of a HEMT to analytically model nonlinear charge control for simulation of HEMT devices and circuits. IEEE Trans. Electron Devices 44(5), 862–868 (1997)CrossRef
Metadata
Title
Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs)
Authors
T. Venish Kumar
N. B. Balamurugan
Publication date
22-04-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01498-2

Other articles of this Issue 3/2020

Journal of Computational Electronics 3/2020 Go to the issue