Skip to main content
Top

2020 | OriginalPaper | Chapter

8. Three-Dimensional Polyhedra

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spherical cages of boron and carbon, known as fullerenes, were investigated theoretically and experimentally by many research groups around the world. Theoretically, different first-principles methods and molecular dynamics simulations were used to investigate the fullerene’s structures and related electronic properties. Experimentally, the scientists developed different methods to fabricate a large quantity of fullerenes, the new allotrope of carbon, and of boron clusters, nanotubes and sheets (borophene).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
P6 in Fig. 8.1 should be assigned as A1.
 
2
The number of hexagons n can be calculated after (n \(=\) a/2–10), where a is the number of boron atoms of the sphere.
 
3
More about Goldberg polyhedra is explained in Sect. 8.2.4.
 
4
The dodecahedron has 20 vertices, 30 edges and 12 pentagonal faces, while the icosahedron has 12 vertices, 30 edges and 20 trigonal faces.
 
5
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces, a decahedron is a polyhedron with ten faces, and an icosahedron is a polyhedron with 20 faces.
 
Literature
1.
go back to reference S. Torquato, A. Jiao, Dense packings of the Platonic and Archimedean solids. Nature 460, 876–880 (2009) S. Torquato, A. Jiao, Dense packings of the Platonic and Archimedean solids. Nature 460, 876–880 (2009)
2.
go back to reference S.J. La Placa, P.A. Roland, J.J. Wynne, Boron clusters (B\(_n\), n = 2, 52) produced by laser ablation of hexagonal boron nitide. Chem. Phys. Lett. 190, 163–168 (1992) S.J. La Placa, P.A. Roland, J.J. Wynne, Boron clusters (B\(_n\), n = 2, 52) produced by laser ablation of hexagonal boron nitide. Chem. Phys. Lett. 190, 163–168 (1992)
3.
go back to reference S. Mukhopadhyay, H. Haying He, R. Ravindra Pandey, Y.K. Yap, I. Boustani, Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings. J. Phys.: Conf. Ser. 176, 012028 (2009) S. Mukhopadhyay, H. Haying He, R. Ravindra Pandey, Y.K. Yap, I. Boustani, Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings. J. Phys.: Conf. Ser. 176, 012028 (2009)
4.
go back to reference C. Özdoǧan, S. Mukhopadhyay, W. Hayami, Z.B. Güvenç, R. Pandey, I. Boustani, The unusually stable B\(_{100}\) fullerene, structural transitions in boron nanostructures, and a comparative study of \(\alpha \)- and \(\gamma \)-boron and sheets. J. Phys. Chem. C 114, 4362–4375 (2010) C. Özdoǧan, S. Mukhopadhyay, W. Hayami, Z.B. Güvenç, R. Pandey, I. Boustani, The unusually stable B\(_{100}\) fullerene, structural transitions in boron nanostructures, and a comparative study of \(\alpha \)- and \(\gamma \)-boron and sheets. J. Phys. Chem. C 114, 4362–4375 (2010)
5.
go back to reference R.R. Zope, The \(\alpha \)-boron cages with four-member rings. Europhys. Lett. 85, 68005(p1–p5) (2009) R.R. Zope, The \(\alpha \)-boron cages with four-member rings. Europhys. Lett. 85, 68005(p1–p5) (2009)
6.
go back to reference W. Hayami, S. Otani, Structural stability of boron clusters with octahedral and tetrahedral symmetries. J. Phys. Chem. A 115, 8204–8207 (2011) W. Hayami, S. Otani, Structural stability of boron clusters with octahedral and tetrahedral symmetries. J. Phys. Chem. A 115, 8204–8207 (2011)
7.
go back to reference W.L. Lipscomp, L. Massa, Examples of large closo boron hydride analogs of carbon fullerenes. Inorg. Chem. 31, 2297–2299 (1992) W.L. Lipscomp, L. Massa, Examples of large closo boron hydride analogs of carbon fullerenes. Inorg. Chem. 31, 2297–2299 (1992)
8.
go back to reference W.L. Lipscomp, L. Massa, Conjuncto closo boranes and relationships to dual structures. Inorg. Chem. 33, 5155–5156 (1994) W.L. Lipscomp, L. Massa, Conjuncto closo boranes and relationships to dual structures. Inorg. Chem. 33, 5155–5156 (1994)
9.
go back to reference A. Gindulyte, N. Krishnamachari, W.L. Lipscomp, Massa: quantum chemical calculations of proposed multicage boron fullerenes. Inorg. Chem. 37, 6546–6548 (1998) A. Gindulyte, N. Krishnamachari, W.L. Lipscomp, Massa: quantum chemical calculations of proposed multicage boron fullerenes. Inorg. Chem. 37, 6546–6548 (1998)
10.
go back to reference A.-C. Tang, Q.-S. Li, C.-W. Liu, J. Li, Symmetrical clusters of carbon and boron. Chem. Phys. Lett. 201, 465–469 (1993) A.-C. Tang, Q.-S. Li, C.-W. Liu, J. Li, Symmetrical clusters of carbon and boron. Chem. Phys. Lett. 201, 465–469 (1993)
11.
go back to reference I. Boustani, A. Rubio, J.A. Alonso, Ab initio study of boron-hydrogen spheres, in Contemporary Boron Chemistry, ed. by M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade (Royal Society of Chemistry, Cambridge, 2000) I. Boustani, A. Rubio, J.A. Alonso, Ab initio study of boron-hydrogen spheres, in Contemporary Boron Chemistry, ed. by M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade (Royal Society of Chemistry, Cambridge, 2000)
12.
go back to reference I. Boustani, Systematic LSD investigation on cationic boron clusters: B\(^+_n\) (n=2-14). Int. J. Q. Chem. 52, 1081–1111 (1994) I. Boustani, Systematic LSD investigation on cationic boron clusters: B\(^+_n\) (n=2-14). Int. J. Q. Chem. 52, 1081–1111 (1994)
13.
go back to reference I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of B\(^+_n\)(n=2-14). Phys. Rev. B 55, 16426–16438 (1997) I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of B\(^+_n\)(n=2-14). Phys. Rev. B 55, 16426–16438 (1997)
14.
go back to reference I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133, 182–189 (1997) I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133, 182–189 (1997)
15.
go back to reference N.G. Szwacki, A. Sadrzadeh, B.I. Yakobson, B\(_{80}\) Fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804(1–4) (2007) N.G. Szwacki, A. Sadrzadeh, B.I. Yakobson, B\(_{80}\) Fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804(1–4) (2007)
16.
go back to reference H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007) H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007)
17.
go back to reference X.-L. Sheng, Q.-B. Yan, Q.-R. Zheng, G. Su, Boron fullerenes B\(_{32+8k}\) with four-membered rings and B\(_{32}\) solid phases: geometrical structures and electronic properties. Phys. Chem. Chem. Phys. 11, 9696–9702 (2009) X.-L. Sheng, Q.-B. Yan, Q.-R. Zheng, G. Su, Boron fullerenes B\(_{32+8k}\) with four-membered rings and B\(_{32}\) solid phases: geometrical structures and electronic properties. Phys. Chem. Chem. Phys. 11, 9696–9702 (2009)
18.
go back to reference S. Mukhopadhyay, H. Haying, R. Pandey, Y.K. Yap, I. Boustani, Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings, in 16th International Symposium on Boron, Borides and Related Materials. Journal of Physical Conference Series, vol. 176, p. 012028 (1–12) (2009) S. Mukhopadhyay, H. Haying, R. Pandey, Y.K. Yap, I. Boustani, Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings, in 16th International Symposium on Boron, Borides and Related Materials. Journal of Physical Conference Series, vol. 176, p. 012028 (1–12) (2009)
19.
go back to reference A.R. Oganov, J. Chen, C. Gatti, Y.-M. Ma, T. Yu, Z. Liu, G.W. Glass, Y.-Z. Ma, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009) A.R. Oganov, J. Chen, C. Gatti, Y.-M. Ma, T. Yu, Z. Liu, G.W. Glass, Y.-Z. Ma, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)
20.
go back to reference Q.-B. Yan, X.-L. Sheng, Q.-R. Zheng, L.-U. Zhang, G. Su, Family of boron fullerenes: general constructing schemes, electron counting rule and ab initio calculations. Phys. Rev. B 78, 201401(R) (2008) Q.-B. Yan, X.-L. Sheng, Q.-R. Zheng, L.-U. Zhang, G. Su, Family of boron fullerenes: general constructing schemes, electron counting rule and ab initio calculations. Phys. Rev. B 78, 201401(R) (2008)
21.
go back to reference R.R. Zope, T. Baruah, Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem. Phys. Lett. 501, 193–196 (2011) R.R. Zope, T. Baruah, Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem. Phys. Lett. 501, 193–196 (2011)
22.
go back to reference N.G. Szwacki, Boron fullerenes: a first-principles study. Nanoscale Res. Lett. 3, 49–54 (2008) N.G. Szwacki, Boron fullerenes: a first-principles study. Nanoscale Res. Lett. 3, 49–54 (2008)
23.
go back to reference R.R. Zope, T. Baruah, K.C. Lau, A.Y. Liu, M.R. Pederson, B.I. Dunlap, Boron fullerenes: from B\(_{80}\) to hole doped boron sheets. Phys. Rev. B 79, 161403(R) (2009) R.R. Zope, T. Baruah, K.C. Lau, A.Y. Liu, M.R. Pederson, B.I. Dunlap, Boron fullerenes: from B\(_{80}\) to hole doped boron sheets. Phys. Rev. B 79, 161403(R) (2009)
24.
go back to reference Q.-B. Yan, Q.-R. Zheng, G. Su, Face-centered-cubic B\(_{80}\) metal: density functional theory calculations. Phys. Rev. B 77, 224106-(1–D5) (2008) Q.-B. Yan, Q.-R. Zheng, G. Su, Face-centered-cubic B\(_{80}\) metal: density functional theory calculations. Phys. Rev. B 77, 224106-(1–D5) (2008)
25.
go back to reference A.Y. Liu, R.R. Zope, M.R. Pederson, Structural and bonding properties of bcc-based B\(_{80}\) solids. Phys. Rev. B78, 155422-(1 to 6) (2008) A.Y. Liu, R.R. Zope, M.R. Pederson, Structural and bonding properties of bcc-based B\(_{80}\) solids. Phys. Rev. B78, 155422-(1 to 6) (2008)
28.
go back to reference A. Kumar, Superconductivity of fullerenes: a Review. Res. J. Pharm. Biol. Chem. Sci (RJPBCS) A. Kumar, Superconductivity of fullerenes: a Review. Res. J. Pharm. Biol. Chem. Sci (RJPBCS)
29.
go back to reference O. Zhou, D.E. Cox, Structures of C\(_{60}\) intercalation compounds. J. Phys. Chem. Solids 53, 1373 (1992) O. Zhou, D.E. Cox, Structures of C\(_{60}\) intercalation compounds. J. Phys. Chem. Solids 53, 1373 (1992)
30.
go back to reference Q.B. Yan, Q.R. Zheng, G. Su, Face-centered-cubic K\(_3\)B\(_{80}\) and Mg\(_2\)B\(_{80}\) metals: Covalent and ionic bondings. Phys. Rev. B 80, 104111–(1 to 6) (2009) Q.B. Yan, Q.R. Zheng, G. Su, Face-centered-cubic K\(_3\)B\(_{80}\) and Mg\(_2\)B\(_{80}\) metals: Covalent and ionic bondings. Phys. Rev. B 80, 104111–(1 to 6) (2009)
31.
go back to reference J.-J. Zhao, L. Wang, F.-G. Li, Z.-F. Chen, B\(_{80}\) and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys. Chem. A 114, 9969–9972 (2010) J.-J. Zhao, L. Wang, F.-G. Li, Z.-F. Chen, B\(_{80}\) and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys. Chem. A 114, 9969–9972 (2010)
32.
go back to reference B. Shang, L.-F. Yuan, X.-G. Zeng, J.-L. Yang, Ab Initio prediction of amorphous B\(_{84}\). J Phys. Chem. A 114, 2245–2249 (2010) B. Shang, L.-F. Yuan, X.-G. Zeng, J.-L. Yang, Ab Initio prediction of amorphous B\(_{84}\). J Phys. Chem. A 114, 2245–2249 (2010)
33.
go back to reference D.L.V.K. Prasad, E.D. Jemmis, Stuffing Improves the stability of fullerene-like boron clusters. Phys. Rev. Lett. 100, 165504 (2008) D.L.V.K. Prasad, E.D. Jemmis, Stuffing Improves the stability of fullerene-like boron clusters. Phys. Rev. Lett. 100, 165504 (2008)
34.
go back to reference H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014) H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014)
35.
go back to reference E.F. Sheka, B.S. Razbirin, E.A. Nikitina, D.K. Nelson, Continuous symmetry of C\(_{60}\) fullerene and its derivatives. J. Phys. Chem. A 115, 3480–3490 (2011) E.F. Sheka, B.S. Razbirin, E.A. Nikitina, D.K. Nelson, Continuous symmetry of C\(_{60}\) fullerene and its derivatives. J. Phys. Chem. A 115, 3480–3490 (2011)
37.
go back to reference T.-M. Zuo, Synthesis, Isolation, and Characterization of Tb-based Large Cage TNT-EMFs and Bimetallic Endohedral Metalloazafullerenes. Dissertation, Virginia State University (2008) T.-M. Zuo, Synthesis, Isolation, and Characterization of Tb-based Large Cage TNT-EMFs and Bimetallic Endohedral Metalloazafullerenes. Dissertation, Virginia State University (2008)
38.
go back to reference D.E.H. Jones, Ariadne. New Scientist 32, 245 (1966) D.E.H. Jones, Ariadne. New Scientist 32, 245 (1966)
39.
go back to reference E.A. Rohlfing, D.M. Cox, A. Kaldor, A.: production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 81, 3322–3330 (1984) E.A. Rohlfing, D.M. Cox, A. Kaldor, A.: production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 81, 3322–3330 (1984)
40.
go back to reference E. Osawa, “Superaromacity” (in Japanese). Kagaku (Kyoto) 25, 854–863 (1970) E. Osawa, “Superaromacity” (in Japanese). Kagaku (Kyoto) 25, 854–863 (1970)
41.
go back to reference D.A. Bochvar, E.G. Galpern, Hypothetical systems: carbododecahedron, s-icosahedron, and carbo-s-icosahedron. (in russian). Doklady Akademii Nauk SSSR, 209, 610–612 (1973) D.A. Bochvar, E.G. Galpern, Hypothetical systems: carbododecahedron, s-icosahedron, and carbo-s-icosahedron. (in russian). Doklady Akademii Nauk SSSR, 209, 610–612 (1973)
42.
go back to reference R.A. Davidson, Spectral analysis of graphs by cyclic automorphism subgroups. Theor. Chem. Acta. 58, 193–231 (1981) R.A. Davidson, Spectral analysis of graphs by cyclic automorphism subgroups. Theor. Chem. Acta. 58, 193–231 (1981)
43.
go back to reference H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\) Buckminsterfullerene. Nature 318, 162–163 (1985) H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\) Buckminsterfullerene. Nature 318, 162–163 (1985)
44.
go back to reference W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C\(_{60}\): a new form of carbon. Nature 347, 354–358 (1990) W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C\(_{60}\): a new form of carbon. Nature 347, 354–358 (1990)
45.
go back to reference E.J. Maggio, Bouncing balls of carbon, in The Discovery and Promise of Fullerenes, From: A Positron Named Priscilla: Scientific Discovery At The Frontier, ed. by M. Bartusiak, B. Burke, A. Greenwood, T.A. Heppenheimer, M. Hoffman, D. Holzman, E.J. Maggio, A.S. Moffat (National Academy of Sciences. National Academy Press, Washington, 1994) E.J. Maggio, Bouncing balls of carbon, in The Discovery and Promise of Fullerenes, From: A Positron Named Priscilla: Scientific Discovery At The Frontier, ed. by M. Bartusiak, B. Burke, A. Greenwood, T.A. Heppenheimer, M. Hoffman, D. Holzman, E.J. Maggio, A.S. Moffat (National Academy of Sciences. National Academy Press, Washington, 1994)
46.
go back to reference M. Hedén, Optical Excitation and Decay Dynamics of Fullerenes. Doctor Thesis, Göteborg University, Göteborg, (2005) M. Hedén, Optical Excitation and Decay Dynamics of Fullerenes. Doctor Thesis, Göteborg University, Göteborg, (2005)
47.
go back to reference H.W. Kroto, Art and science: geodesy in materials science. Acta Chem. Slov. 57, 613–616 (2010) H.W. Kroto, Art and science: geodesy in materials science. Acta Chem. Slov. 57, 613–616 (2010)
48.
go back to reference H.W. Kroto, K. McKay, The formation of quasi-icosahedral spiral shell carbon particles. Nature 331, 328–331 (1988) H.W. Kroto, K. McKay, The formation of quasi-icosahedral spiral shell carbon particles. Nature 331, 328–331 (1988)
49.
go back to reference Z. Berkai, M. Daoudi, N. Menddil, A. Belghachi, Theoretical study of fullerene (C60) force field at room temperature. Energy Proc. 74, 59–64 (2015) Z. Berkai, M. Daoudi, N. Menddil, A. Belghachi, Theoretical study of fullerene (C60) force field at room temperature. Energy Proc. 74, 59–64 (2015)
50.
go back to reference P.W. Dunk, A. Rodríguez-Fortea, N.K. Kaiser, H. Shinohara, J.M. Poblet, H.W. Kroto, Formation of heterofullerenes by direct exposure of C 60 to boron vapor. Angew. Chem. Int. Ed. 52, 315–319 (2013) P.W. Dunk, A. Rodríguez-Fortea, N.K. Kaiser, H. Shinohara, J.M. Poblet, H.W. Kroto, Formation of heterofullerenes by direct exposure of C 60 to boron vapor. Angew. Chem. Int. Ed. 52, 315–319 (2013)
51.
go back to reference S. Rols, C. Bousige, J. Cambedouzou, P. Launois, J.-L. Sauvajol, H. Schober, V.N. Agafonov, V.A. Davydov, J. Ollivier, Unravelling low lying phonons and vibrations of carbon nanostructures: the contribution of inelastic and quasi-elastic neutron scattering. Eur. Phys. J. Special Topics 213, 77–102 (2012) S. Rols, C. Bousige, J. Cambedouzou, P. Launois, J.-L. Sauvajol, H. Schober, V.N. Agafonov, V.A. Davydov, J. Ollivier, Unravelling low lying phonons and vibrations of carbon nanostructures: the contribution of inelastic and quasi-elastic neutron scattering. Eur. Phys. J. Special Topics 213, 77–102 (2012)
52.
go back to reference M. Schein, J.M. Gayed, Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. PNAS 111, 2920–2925 (2014) M. Schein, J.M. Gayed, Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. PNAS 111, 2920–2925 (2014)
53.
go back to reference M.A. Goldberg, A class of multi-symmetric polyhedra. J. Tohoku Math. 43, 104–108 (1937) M.A. Goldberg, A class of multi-symmetric polyhedra. J. Tohoku Math. 43, 104–108 (1937)
55.
go back to reference C. Chuang, B.-Y. Jin, C.-C. Tsoo, N.Y.-W. Tang, P.S.M. Cheung, L.A. Cuccia, Molecular modeling of fullerenes with beads. J. Chem. Educ. 89, 414–416 (2012) C. Chuang, B.-Y. Jin, C.-C. Tsoo, N.Y.-W. Tang, P.S.M. Cheung, L.A. Cuccia, Molecular modeling of fullerenes with beads. J. Chem. Educ. 89, 414–416 (2012)
56.
go back to reference M. Yoshida, E. Osawa, Molecular mechanics calculations of giant- and hyperfullerenes with eicosahedral symmetry. Fuller. Sci. Technol. 1, 55–74 (1993) M. Yoshida, E. Osawa, Molecular mechanics calculations of giant- and hyperfullerenes with eicosahedral symmetry. Fuller. Sci. Technol. 1, 55–74 (1993)
57.
go back to reference S.J. Yeo, R. Pode, J.S. Ahn, H.M. Kim, Study on the size of fullerene (C\(_{60}\)) aggregates in solution by photoluminescence and HRTEM measurements. J. Korean Phys. Soc. 55, 322–326 (2009) S.J. Yeo, R. Pode, J.S. Ahn, H.M. Kim, Study on the size of fullerene (C\(_{60}\)) aggregates in solution by photoluminescence and HRTEM measurements. J. Korean Phys. Soc. 55, 322–326 (2009)
58.
go back to reference M. Álvarez-Murga, J.L. Hodeau, Structural phase transitions of C\(_{60}\) under high-pressure and high-temperature. Carbon 82, 381–407 (2015) M. Álvarez-Murga, J.L. Hodeau, Structural phase transitions of C\(_{60}\) under high-pressure and high-temperature. Carbon 82, 381–407 (2015)
59.
go back to reference S. Yamanaka, Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans. 39, 1901–1915 (2010) S. Yamanaka, Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans. 39, 1901–1915 (2010)
61.
go back to reference A. San-Migel, Nanomaterials under high-pressure. Chem. Soc. Rev. 35, 876–889 (2006) A. San-Migel, Nanomaterials under high-pressure. Chem. Soc. Rev. 35, 876–889 (2006)
62.
go back to reference S. Yamanaka, N.S. Kini, A. Kubo, S. Jida, H. Kuramoto, Topochemical 3D polymerization of C\(_{60}\) under high pressure at elevated temperatures. J. Am. Chem. Soc. 130, 4303–4309 (2008) S. Yamanaka, N.S. Kini, A. Kubo, S. Jida, H. Kuramoto, Topochemical 3D polymerization of C\(_{60}\) under high pressure at elevated temperatures. J. Am. Chem. Soc. 130, 4303–4309 (2008)
63.
go back to reference J.G. Hou, A.D. Zhao, T. Huang, S. Lu, \(C_{60}\)- Based Materials, in ed. H.S. Nalwa by Encyclopedia of Nanoscience and Nanotechnology 1, 409–474 (2004) J.G. Hou, A.D. Zhao, T. Huang, S. Lu, \(C_{60}\)- Based Materials, in ed. H.S. Nalwa by Encyclopedia of Nanoscience and Nanotechnology 1, 409–474 (2004)
64.
go back to reference W. Branz, N. Malinowski, A. Enders, T.P. Martin, Structural transition in (C\(_{60})_n\) clusters. Phys. Rev. B 66, 094107(1–14) (2002) W. Branz, N. Malinowski, A. Enders, T.P. Martin, Structural transition in (C\(_{60})_n\) clusters. Phys. Rev. B 66, 094107(1–14) (2002)
65.
go back to reference J. Bedia, V. Mueles-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodrígues, C. Belver, A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9, 1–43 (2019) J. Bedia, V. Mueles-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodrígues, C. Belver, A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9, 1–43 (2019)
66.
go back to reference E.V. Perez, C. Karunaweera, I.H. Musselman, K. Balkus Jr., J.P. Ferraris, Origins and evolution of inorganic-based and mof-based mixed-matrix membranes for gas separations. Processes 4, 1–68 (2016) E.V. Perez, C. Karunaweera, I.H. Musselman, K. Balkus Jr., J.P. Ferraris, Origins and evolution of inorganic-based and mof-based mixed-matrix membranes for gas separations. Processes 4, 1–68 (2016)
69.
go back to reference A. Burrows, J. Holman, A. Parsons, G. Pilling, G. Price (eds.), Chemistry\(^3\)D: Introducing Inorganic, Organic and Physical Chemistry, 3rd edn. (Oxford University Press, Oxford, 2017) A. Burrows, J. Holman, A. Parsons, G. Pilling, G. Price (eds.), Chemistry\(^3\)D: Introducing Inorganic, Organic and Physical Chemistry, 3rd edn. (Oxford University Press, Oxford, 2017)
70.
go back to reference C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov, Application of metal-organic frameworks. Polym. Int. 66, 731–744 (2017) C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov, Application of metal-organic frameworks. Polym. Int. 66, 731–744 (2017)
Metadata
Title
Three-Dimensional Polyhedra
Author
Ihsan Boustani
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-32726-2_8

Premium Partners