Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2019

30-03-2019

Three Specimen Geometries and Three Methods of Data Evaluation in Single-Fiber Pullout Tests

Authors: S. Zhandarov, C. Scheffler, E. Mäder, U. Gohs

Published in: Mechanics of Composite Materials | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The shapes of force–displacement curves recorded in single-fiber pullout and microbond tests are analyzed within the framework of a stress-based model of interfacial debonding. Three characteristic points allowing one to evaluate the local interfacial strength parameters, the local interfacial shear strength (IFSS), and the interfacial frictional stress, using several different methods, can be marked out in each curve. The “alternative” method based on the measured peak force and initial postdebonding force appeared to be more reliable than the “traditional” one using the debond force for calculating the local IFSS in fiber–matrix systems. The effect of specimen geometry on force–displacement curves and on calculated local interfacial strength parameters was investigated. Though the “equivalent cylinder” approximation often yields a good estimate of these parameters, there is a need for a method which would explicitly include the actual specimen geometry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. V. Shiriajeva and G. D. Andreevskaya, “Method of determination of the adhesion of resins to the surface of glass fibers,” Plast. Massy, 4, 42-43 (1962). G. V. Shiriajeva and G. D. Andreevskaya, “Method of determination of the adhesion of resins to the surface of glass fibers,” Plast. Massy, 4, 42-43 (1962).
2.
go back to reference B. Miller, P. Muri, and L. Rebenfeld, “A microbond method for determination of the shear strength of a fiber–resin interface,” Compos. Sci. Technol., 28, 17-32 (1987).CrossRef B. Miller, P. Muri, and L. Rebenfeld, “A microbond method for determination of the shear strength of a fiber–resin interface,” Compos. Sci. Technol., 28, 17-32 (1987).CrossRef
3.
go back to reference L. S. Penn and E. R. Bowler, “A new approach to surface energy characterization for adhesive performance prediction,” Surf. Interfac. Anal., 3, 161-164 (1981).CrossRef L. S. Penn and E. R. Bowler, “A new approach to surface energy characterization for adhesive performance prediction,” Surf. Interfac. Anal., 3, 161-164 (1981).CrossRef
4.
go back to reference E. Cailleux, T. Cutard, and G. Bernhart, Pullout of metallic fibres from a ceramic refractory matrix,” Composites: Part A, 33, 1461-1466 (2002).CrossRef E. Cailleux, T. Cutard, and G. Bernhart, Pullout of metallic fibres from a ceramic refractory matrix,” Composites: Part A, 33, 1461-1466 (2002).CrossRef
5.
go back to reference W. Zhou, G. Yamamoto, Y. Fan, and A. Kawasaki, “In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites,” Carbon, 106, 37-47 (2016).CrossRef W. Zhou, G. Yamamoto, Y. Fan, and A. Kawasaki, “In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites,” Carbon, 106, 37-47 (2016).CrossRef
6.
go back to reference W. P. Boshoff, V. Mechtcherine, and G. P. A. G. van Zijl, “Characterizing the time-dependant behavior on single fibre level of SHCC: Part 2: The rate effects on fibre pullout tests,” Cement and Concrete Research, 39, 787-797 (2009).CrossRef W. P. Boshoff, V. Mechtcherine, and G. P. A. G. van Zijl, “Characterizing the time-dependant behavior on single fibre level of SHCC: Part 2: The rate effects on fibre pullout tests,” Cement and Concrete Research, 39, 787-797 (2009).CrossRef
7.
go back to reference K. K. C. Ho, G. Kalinka, M. Q. Tran, N. V. Polyakova, and A. Bismarck, “Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers,” Compos. Sci. Technol., 67, 2699-2706 (2007).CrossRef K. K. C. Ho, G. Kalinka, M. Q. Tran, N. V. Polyakova, and A. Bismarck, “Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers,” Compos. Sci. Technol., 67, 2699-2706 (2007).CrossRef
8.
go back to reference R. V. Subramanian and K.-H. H. Shu, Silane coupling agents for basalt fiber reinforced polymer composites, in: Molecular Characterization of Composite Interfaces, ed. A. von Rubinowicz, Springer, pp. 205-236 (2013), R. V. Subramanian and K.-H. H. Shu, Silane coupling agents for basalt fiber reinforced polymer composites, in: Molecular Characterization of Composite Interfaces, ed. A. von Rubinowicz, Springer, pp. 205-236 (2013),
9.
go back to reference W. Liu, J. Huang, N. Wang, and S. Lei, “The influence of moisture content on the interfacial properties of natural palm fiber–matrix composite,” Wood Sci. Technol., 49, 371-387 (2015).CrossRef W. Liu, J. Huang, N. Wang, and S. Lei, “The influence of moisture content on the interfacial properties of natural palm fiber–matrix composite,” Wood Sci. Technol., 49, 371-387 (2015).CrossRef
10.
go back to reference K. Tanaka, K. Minoshima, W. Grela, and K. Komai, “Characterization of te aramid/epoxy interfacial properties by means of pullout test and influence of water adsorption,” Compos. Sci. Technol., 62, 2169-2177 (2002).CrossRef K. Tanaka, K. Minoshima, W. Grela, and K. Komai, “Characterization of te aramid/epoxy interfacial properties by means of pullout test and influence of water adsorption,” Compos. Sci. Technol., 62, 2169-2177 (2002).CrossRef
11.
go back to reference A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solid, 13, 329-350 (1965).CrossRef A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solid, 13, 329-350 (1965).CrossRef
12.
go back to reference Y. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New York, 1992. Y. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New York, 1992.
13.
go back to reference G. Désarmot and J. P. Favre, “Advances in pullout testing and data analysis,” Compos. Sci. Technol., 42, 151-187 (1991).CrossRef G. Désarmot and J. P. Favre, “Advances in pullout testing and data analysis,” Compos. Sci. Technol., 42, 151-187 (1991).CrossRef
14.
go back to reference N. Takeda, D. Y. Song, K. Nakata, and T. Shioya, “The effect of fiber surface treatment on the micro-fracture progress in glass fiber/Nylon 6 composites,” Compos. Interfaces, 2, 143-155 (1994). N. Takeda, D. Y. Song, K. Nakata, and T. Shioya, “The effect of fiber surface treatment on the micro-fracture progress in glass fiber/Nylon 6 composites,” Compos. Interfaces, 2, 143-155 (1994).
15.
go back to reference S. Zhandarov and E. Mäder, “Peak force as function of the embedded length in the pullout and microbond tests: Effect of specimen geometry,” J. Adhes. Sci. Technol., 19, 817-855 (2005).CrossRef S. Zhandarov and E. Mäder, “Peak force as function of the embedded length in the pullout and microbond tests: Effect of specimen geometry,” J. Adhes. Sci. Technol., 19, 817-855 (2005).CrossRef
16.
go back to reference M. R. Piggott, “Why interface testing by single-fibre methods can be misleading,” Compos. Sci. Technol., 57, 965-974 (1997).CrossRef M. R. Piggott, “Why interface testing by single-fibre methods can be misleading,” Compos. Sci. Technol., 57, 965-974 (1997).CrossRef
17.
go back to reference C. H. Liu and J. A. Nairn, “Analytical fracture mechanics of the microbond test including the effects of friction and thermal stresses,” Int. J. Adhesion Adhesives, 19, 59-70 (1999).CrossRef C. H. Liu and J. A. Nairn, “Analytical fracture mechanics of the microbond test including the effects of friction and thermal stresses,” Int. J. Adhesion Adhesives, 19, 59-70 (1999).CrossRef
18.
go back to reference S. Zhandarov, E. Pisanova, and K. Schneider, “Fiber-stretching test: a new technique for characterizing the fiber–matrix interface using direct observation of crack initiation and propagation,” J. Adhesion Sci. Technol., 14, 381-398 (2000).CrossRef S. Zhandarov, E. Pisanova, and K. Schneider, “Fiber-stretching test: a new technique for characterizing the fiber–matrix interface using direct observation of crack initiation and propagation,” J. Adhesion Sci. Technol., 14, 381-398 (2000).CrossRef
19.
go back to reference E. Pisanova, S. Zhandarov, E. Mäder, I. Ahmad, and R. J. Young, “Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems,” Composites: Part A, 32, 435-443 (2001).CrossRef E. Pisanova, S. Zhandarov, E. Mäder, I. Ahmad, and R. J. Young, “Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems,” Composites: Part A, 32, 435-443 (2001).CrossRef
20.
go back to reference D. J. Bannister, M. C. Andrews, A. J. Cervenka, and R. J. Young, “Analysis of the single-fibre pullouttest by means of Raman spectroscopy: Part II. Micromechanics of deformation for an aramid/epoxy system,” Compos. Sci. Technol., 53, 411-421 (1995).CrossRef D. J. Bannister, M. C. Andrews, A. J. Cervenka, and R. J. Young, “Analysis of the single-fibre pullouttest by means of Raman spectroscopy: Part II. Micromechanics of deformation for an aramid/epoxy system,” Compos. Sci. Technol., 53, 411-421 (1995).CrossRef
21.
go back to reference M. Shioya, E. Mikami, and T. Kikutani, “Analysis of single-fiber pullout from composites by using stress birefringence,” Compos. Interfaces, 4, 429-445 (1997).CrossRef M. Shioya, E. Mikami, and T. Kikutani, “Analysis of single-fiber pullout from composites by using stress birefringence,” Compos. Interfaces, 4, 429-445 (1997).CrossRef
22.
go back to reference R. J. Kerans and T. A. Parthasarathy, “Theoretical analysis of the fiber pullout and pushout tests,” J. Am. Ceram. Soc., 74, 1585-1596 (1991).CrossRef R. J. Kerans and T. A. Parthasarathy, “Theoretical analysis of the fiber pullout and pushout tests,” J. Am. Ceram. Soc., 74, 1585-1596 (1991).CrossRef
23.
go back to reference A. Hampe and C. Marotzke, “The energy release rate of the fiber/polymer matrix interface: measurement and theoretical analysis,” J. Reinf. Plastics Compos., 16, 341-352 (1997).CrossRef A. Hampe and C. Marotzke, “The energy release rate of the fiber/polymer matrix interface: measurement and theoretical analysis,” J. Reinf. Plastics Compos., 16, 341-352 (1997).CrossRef
24.
go back to reference S. Zhandarov and E. Mäder, “An alternative method of determining the local interfacial shear strength from force–displacement curves in the pullout and microbond tests,” Int. J. Adhesion Adhesives, 55, 37-42 (2014).CrossRef S. Zhandarov and E. Mäder, “An alternative method of determining the local interfacial shear strength from force–displacement curves in the pullout and microbond tests,” Int. J. Adhesion Adhesives, 55, 37-42 (2014).CrossRef
25.
go back to reference S. F. Zhandarov, E. Mäder, and O. R. Yurkevich, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part I: Local bond strength,” J. Adhes. Sci. Technol., 16, 1171-1200 (2002).CrossRef S. F. Zhandarov, E. Mäder, and O. R. Yurkevich, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part I: Local bond strength,” J. Adhes. Sci. Technol., 16, 1171-1200 (2002).CrossRef
26.
go back to reference L. B. Greszczuk, Theoretical studies of the mechanisms of the fibre–matrix interface. Interfaces in composites, ASTM STP 452. Philadelphia: American Society for Testing and Materials, 42-48 (1969). L. B. Greszczuk, Theoretical studies of the mechanisms of the fibre–matrix interface. Interfaces in composites, ASTM STP 452. Philadelphia: American Society for Testing and Materials, 42-48 (1969).
27.
go back to reference J. P. Favre, G. Désarmot, O. Sudre, and A. Vassel, “Were McGarry or Shiriajeva right to measure glass–fiber adhesion?” Compos. Interfaces, 4, 313-326 (1997).CrossRef J. P. Favre, G. Désarmot, O. Sudre, and A. Vassel, “Were McGarry or Shiriajeva right to measure glass–fiber adhesion?” Compos. Interfaces, 4, 313-326 (1997).CrossRef
28.
go back to reference T. Kanda and V. C. Li, „Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix,” J. Mater. Civil. Eng., 10, 5-13 (1998).CrossRef T. Kanda and V. C. Li, „Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix,” J. Mater. Civil. Eng., 10, 5-13 (1998).CrossRef
29.
go back to reference C. K. Y. Leung and V. C. Li, “New strength-based model for the debonding of discontinuous fibers in an elastic matrix,” J. Mater. Sci., 26, 5996-6010 (1991).CrossRef C. K. Y. Leung and V. C. Li, “New strength-based model for the debonding of discontinuous fibers in an elastic matrix,” J. Mater. Sci., 26, 5996-6010 (1991).CrossRef
30.
go back to reference S. J. Eichhorn, J. A. Bennett, Y. T. Shyng, R. J. Young, and R. J. Davies, “Analysis of interfacial micromechanics in microdroplet model composites using synchrotron microfocus X-ray diffraction,” Compos. Sci. Technol., 66, 2197-2205 (2006).CrossRef S. J. Eichhorn, J. A. Bennett, Y. T. Shyng, R. J. Young, and R. J. Davies, “Analysis of interfacial micromechanics in microdroplet model composites using synchrotron microfocus X-ray diffraction,” Compos. Sci. Technol., 66, 2197-2205 (2006).CrossRef
31.
go back to reference R. J. Scheer and J. A. Nairn, “Variational mechanics analysis of stresses and failure in microdrop debond specimens,” Compos. Engineering, 2, 641-654 (1992).CrossRef R. J. Scheer and J. A. Nairn, “Variational mechanics analysis of stresses and failure in microdrop debond specimens,” Compos. Engineering, 2, 641-654 (1992).CrossRef
32.
go back to reference Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” J. Appl. Mathem. Phys., 39, 550-572 (1988). Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” J. Appl. Mathem. Phys., 39, 550-572 (1988).
33.
go back to reference H. Stang and S. P. Shah, “Failure of fiber reinforced composites by pullout fracture,” J. Mater. Sci., 21, 953-958 (1986).CrossRef H. Stang and S. P. Shah, “Failure of fiber reinforced composites by pullout fracture,” J. Mater. Sci., 21, 953-958 (1986).CrossRef
34.
go back to reference C. K. Y. Leung, “Fracture-based two-way debonding model for discontinuous fibers in an elastic matrix,” J. Eng. Mech., 118, 2298-2318 (1992).CrossRef C. K. Y. Leung, “Fracture-based two-way debonding model for discontinuous fibers in an elastic matrix,” J. Eng. Mech., 118, 2298-2318 (1992).CrossRef
35.
go back to reference J. A. Nairn, “Analytical fracture mechanics analysis of the pullout test including the effects of friction and thermal stresses,” Adv. Compos. Lett., 9, 373-383 (2000).CrossRef J. A. Nairn, “Analytical fracture mechanics analysis of the pullout test including the effects of friction and thermal stresses,” Adv. Compos. Lett., 9, 373-383 (2000).CrossRef
36.
go back to reference S. Zhandarov, E. Pisanova, and B. Lauke, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part I. Crack initiation: stress-controlled or energy-controlled?” Compos. Interfaces, 5, 387-404 (1998).CrossRef S. Zhandarov, E. Pisanova, and B. Lauke, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part I. Crack initiation: stress-controlled or energy-controlled?” Compos. Interfaces, 5, 387-404 (1998).CrossRef
37.
go back to reference S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test,” J. Adhesion Sci. Technol., 19, 679-704 (2005).CrossRef S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test,” J. Adhesion Sci. Technol., 19, 679-704 (2005).CrossRef
38.
go back to reference W. Brameshuber and B. Banholzer, “Eine Methode zur Beschreibung des Verbundes zwischen Faser und zementgebundener Matrix, ” Beton- und Stahlbetonbau, 96, 663-669 (2001).CrossRef W. Brameshuber and B. Banholzer, “Eine Methode zur Beschreibung des Verbundes zwischen Faser und zementgebundener Matrix, ” Beton- und Stahlbetonbau, 96, 663-669 (2001).CrossRef
39.
go back to reference C. Scheffler, S. Zhandarov, W. Jenschke, and E. Mäder, “Poly (vinyl alcohol) fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading,” J. Adhesion Sci. Technol., 27, 385-402 (2013).CrossRef C. Scheffler, S. Zhandarov, W. Jenschke, and E. Mäder, “Poly (vinyl alcohol) fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading,” J. Adhesion Sci. Technol., 27, 385-402 (2013).CrossRef
40.
go back to reference S. Radl, M. Kreimer, J. Manhart, T. Griesser, A. Moser, G. Pinter, G. Kalinka, W. Kern, and S. Schlögl, „Photocleavable epoxy based materials,“ Polymer, 69, 159-168 (2015).CrossRef S. Radl, M. Kreimer, J. Manhart, T. Griesser, A. Moser, G. Pinter, G. Kalinka, W. Kern, and S. Schlögl, „Photocleavable epoxy based materials,“ Polymer, 69, 159-168 (2015).CrossRef
41.
go back to reference S. Meretz, W. Auersch, C. Marotzke, E. Schulz, and A. Hampe, “Investigation of morphology-dependent fracture behaviour with the single-fibre pullout test,” Compos. Sci. Technol., 48, 285-290 (1993).CrossRef S. Meretz, W. Auersch, C. Marotzke, E. Schulz, and A. Hampe, “Investigation of morphology-dependent fracture behaviour with the single-fibre pullout test,” Compos. Sci. Technol., 48, 285-290 (1993).CrossRef
42.
go back to reference I. Curosu, M. Liebscher, V. Mechtcherine, C. Bellmann, and S. Michel, “Tensile behavior of high-strength strainhardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers,” Cement and Concrete Research, 98, 71-81 (2017).CrossRef I. Curosu, M. Liebscher, V. Mechtcherine, C. Bellmann, and S. Michel, “Tensile behavior of high-strength strainhardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers,” Cement and Concrete Research, 98, 71-81 (2017).CrossRef
43.
go back to reference M. Heppenstall-Butler, D. J. Bannister, and R. J. Young, “A study of transcrystalline polypropylene/single-aramid-fibre pullout behavior using Raman spectroscopy,” Composites: Part A, 27, 833-838 (1996).CrossRef M. Heppenstall-Butler, D. J. Bannister, and R. J. Young, “A study of transcrystalline polypropylene/single-aramid-fibre pullout behavior using Raman spectroscopy,” Composites: Part A, 27, 833-838 (1996).CrossRef
44.
go back to reference P. Frantzis and R. Baggott, “Bond between reinforcing steel fibers and magnesium phosphate/calcium aluminate binders,” Cement and Concrete Composites, 22, 187-192 (2000).CrossRef P. Frantzis and R. Baggott, “Bond between reinforcing steel fibers and magnesium phosphate/calcium aluminate binders,” Cement and Concrete Composites, 22, 187-192 (2000).CrossRef
45.
go back to reference P. Järvelä, K. W. Laitinen, J. Purola, and P. Törmälä, “The three-fibre method for measuring glass fibre to resin bond strength,” Int. J. Adhesion Adhesives, 3, 141-147 (1983).CrossRef P. Järvelä, K. W. Laitinen, J. Purola, and P. Törmälä, “The three-fibre method for measuring glass fibre to resin bond strength,” Int. J. Adhesion Adhesives, 3, 141-147 (1983).CrossRef
46.
go back to reference S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part II. Crack propagation: Effect of friction on force–displacement curves,” Compos. Interfaces, 7, 149-175 (2000).CrossRef S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part II. Crack propagation: Effect of friction on force–displacement curves,” Compos. Interfaces, 7, 149-175 (2000).CrossRef
47.
go back to reference H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys., 3, 72-79 (1952).CrossRef H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys., 3, 72-79 (1952).CrossRef
48.
go back to reference A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fibre Sci. Technol., 10, 195-209 (1977).CrossRef A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fibre Sci. Technol., 10, 195-209 (1977).CrossRef
49.
go back to reference J. A. Nairn, “Fracture mechanics of composites with residual thermal stresses,” J. Appl. Mech., 64, 804-810 (1997).CrossRef J. A. Nairn, “Fracture mechanics of composites with residual thermal stresses,” J. Appl. Mech., 64, 804-810 (1997).CrossRef
50.
go back to reference M. C. Andrews, D. J. Bannister, and R. J. Young, “Review: the interfacial properties of aramid/epoxy model composites,” J. Mater. Sci., 31, 3893-3913 (1996).CrossRef M. C. Andrews, D. J. Bannister, and R. J. Young, “Review: the interfacial properties of aramid/epoxy model composites,” J. Mater. Sci., 31, 3893-3913 (1996).CrossRef
51.
go back to reference S. Zhandarov, E. Pisanova, E. Mäder, and J. A. Nairn, “Investigation of load transfer between the fiber and the matrix in pullout tests with fibers having different diameters,” J. Adhes. Sci. Technol., 15, 205-222 (2001).CrossRef S. Zhandarov, E. Pisanova, E. Mäder, and J. A. Nairn, “Investigation of load transfer between the fiber and the matrix in pullout tests with fibers having different diameters,” J. Adhes. Sci. Technol., 15, 205-222 (2001).CrossRef
52.
go back to reference S. Zhandarov and E. Mäder, “Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters,” Compos. Sci. Technol., 65, 149-160 (2005).CrossRef S. Zhandarov and E. Mäder, “Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters,” Compos. Sci. Technol., 65, 149-160 (2005).CrossRef
53.
go back to reference S. Zhandarov and E. Mäder, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part II: Critical energy release rate,” J. Adhes. Sci. Technol., 17, 967-980 (2003).CrossRef S. Zhandarov and E. Mäder, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part II: Critical energy release rate,” J. Adhes. Sci. Technol., 17, 967-980 (2003).CrossRef
54.
go back to reference B. J. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci., 57, 488-495 (1976).CrossRef B. J. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci., 57, 488-495 (1976).CrossRef
55.
go back to reference R. J. Scheer and J. A. Nairn, “A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests,” J. Adhesion, 53, 45-68 (1995).CrossRef R. J. Scheer and J. A. Nairn, “A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests,” J. Adhesion, 53, 45-68 (1995).CrossRef
56.
go back to reference R. W. Goettler and K. T. Faber, “Interfacial shear stresses in fiber-reinforced glasses,” Compos. Sci. Technol., 37, 129-147 (1989).CrossRef R. W. Goettler and K. T. Faber, “Interfacial shear stresses in fiber-reinforced glasses,” Compos. Sci. Technol., 37, 129-147 (1989).CrossRef
57.
go back to reference M. J. Pitkethly and J. B. Doble, “Characterizing the fibre/matrix interface of carbon fibre-reinforced composites using a single fibre pullout test,” Composites: 21, 389-395 (1990).CrossRef M. J. Pitkethly and J. B. Doble, “Characterizing the fibre/matrix interface of carbon fibre-reinforced composites using a single fibre pullout test,” Composites: 21, 389-395 (1990).CrossRef
58.
go back to reference S. J. Park, M. K. Seo, H. Y. Kim, and D. R. Lee, “Studies on PAN-based carbon fibers irradiated by Ar+ ion beams,” J. Colloid Interface Sci., 261, 393-398 (2003).CrossRef S. J. Park, M. K. Seo, H. Y. Kim, and D. R. Lee, “Studies on PAN-based carbon fibers irradiated by Ar+ ion beams,” J. Colloid Interface Sci., 261, 393-398 (2003).CrossRef
59.
go back to reference P. H. Bischoff and S. H. Perry, Compressive behavior of concrete at high strain rates,” Mater. Struct., 24, 425-450 (1991).CrossRef P. H. Bischoff and S. H. Perry, Compressive behavior of concrete at high strain rates,” Mater. Struct., 24, 425-450 (1991).CrossRef
60.
go back to reference W. Ehrentraut, R. Plonka, E. Mäder, and S. L. Gao, “Pilotanlage zum Erspinnen alkaliresistenter Glasfasern — Pilot equipment for continuous spinning of alkaline resistant glass fibers,” Tech. Textilien/Technical Text., 48, 22-24, E23-25 (2005). W. Ehrentraut, R. Plonka, E. Mäder, and S. L. Gao, “Pilotanlage zum Erspinnen alkaliresistenter Glasfasern — Pilot equipment for continuous spinning of alkaline resistant glass fibers,” Tech. Textilien/Technical Text., 48, 22-24, E23-25 (2005).
61.
go back to reference E. Mäder, K. Grundke, H. J. Jacobasch, and G. Wachinger, “Surface, interphase and composite property relations in fibre-reinforced composites,” Composites: 25, 739-744 (1994).CrossRef E. Mäder, K. Grundke, H. J. Jacobasch, and G. Wachinger, “Surface, interphase and composite property relations in fibre-reinforced composites,” Composites: 25, 739-744 (1994).CrossRef
62.
go back to reference B. Liu, Z. Liu, X. Wang, G. Zhang, S. Long, and J. Yang, “Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test,” Polymer Testing, 32, 724-730 (2013).CrossRef B. Liu, Z. Liu, X. Wang, G. Zhang, S. Long, and J. Yang, “Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test,” Polymer Testing, 32, 724-730 (2013).CrossRef
63.
go back to reference S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part I: matrix droplet in the shape of a spherical segment,” J. Adhesion Sci. Technol., 27, 430-465 (2013).CrossRef S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part I: matrix droplet in the shape of a spherical segment,” J. Adhesion Sci. Technol., 27, 430-465 (2013).CrossRef
64.
go back to reference S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part II: the effect of meniscus,” J. Adhesion Sci. Technol., 28, 65-84 (2014).CrossRef S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part II: the effect of meniscus,” J. Adhesion Sci. Technol., 28, 65-84 (2014).CrossRef
65.
go back to reference S. Zhandarov and E. Mäder, “Alternative” method of pullouttest evaluation with real specimen geometry,” Abstract book of PolyComTrib-2017: Int. Conf. on Polymer Composites and Tribology, Gomel (Belarus), June 27-30, 2017. S. Zhandarov and E. Mäder, “Alternative” method of pullouttest evaluation with real specimen geometry,” Abstract book of PolyComTrib-2017: Int. Conf. on Polymer Composites and Tribology, Gomel (Belarus), June 27-30, 2017.
Metadata
Title
Three Specimen Geometries and Three Methods of Data Evaluation in Single-Fiber Pullout Tests
Authors
S. Zhandarov
C. Scheffler
E. Mäder
U. Gohs
Publication date
30-03-2019
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2019
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-019-09793-1

Other articles of this Issue 1/2019

Mechanics of Composite Materials 1/2019 Go to the issue

Premium Partners