Skip to main content
Top
Published in: Wireless Networks 7/2014

01-10-2014

Throughput analysis of IEEE 802.15.4 beacon-enabled MAC protocol in the presence of hidden nodes

Authors: S. Wijetunge, U. Gunawardana, R. Liyanapathirana

Published in: Wireless Networks | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The presence of hidden nodes degrades the performance of wireless networks due to an excessive amount of data frame collisions. The IEEE 802.15.4 medium access control (MAC) protocol, which is widely used in current wireless sensor networks, does not provide any hidden node avoidance mechanisms and consequently could lead to severe performance degradation in networks with hidden nodes. This paper presents a simple technique based on discrete-time Markov chain analysis to approximate the throughput of IEEE 802.15.4 MAC protocol in the presence of hidden nodes. Using different network configurations, we validate the applicability of the proposed analysis for generic star-topology networks. Based on the analysis, the effects of network size, topology, frame length and frame arrival rate on the throughput of the system are investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The beacon-enabled mode is widely used with WSNs in particular for synchronised monitoring applications [22]
 
2
A similar DTMC based analysis has been proposed in [3] to model the common channel in IEEE 802.15.4 star topology networks when all nodes share the same carrier sensing range. Because of the absence of hidden nodes, the DTMC presented in [3] has a less number of states, and its transition probabilities can be easily derived by modelling the behaviour of only a single node.
 
3
BO = 6 is only used as an input for simulations. There is no significant impact of the value of BO parameter on the protocol’s throughput in always active networks (i.e., networks where beacon order (BO) = superframe order (SO)), in particular for higher BOs [3].
 
4
Fairness indicates how fair a node in a given group gets the opportunity to contribute to the network throughput. For a given network, Fairness of Group j is expressed as
$$Fairness\, of\, Group\, j = \frac{Th_{max-network} - Th_{min-Group\, j}}{Th_{max-network}}$$
where Th max-network and \(Th_{min-Group\; j}\) represent the maximum throughput value contributed by a node from the entire network and the minimum throughput value contributed by a node from that particular group, respectively.
 
5
Nodes in Fig. 11(a) and (b) are numbered for the simplicity of explanation.
 
6
We assume symmetric hearing between nodes, i.e., Node A hears Node B \(\Longleftrightarrow\) Node B hears Node A Node A cannot hear Node B \(\Longleftrightarrow\) Node B cannot hear Node A.
 
Literature
1.
go back to reference IEEE Std 802.15.4 (Revision of IEEE Std 802.15.4-2003). (2006). Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). IEEE Std 802.15.4 (Revision of IEEE Std 802.15.4-2003). (2006). Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs).
2.
go back to reference Park, T., Kim, T., Choi, J., Choi, S., & Kwon, W. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. Electronics Letters, 41(18), 1017–1019.CrossRef Park, T., Kim, T., Choi, J., Choi, S., & Kwon, W. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. Electronics Letters, 41(18), 1017–1019.CrossRef
3.
go back to reference Ramachandran, I., Das, A. K., & Roy, S. (2007). Analysis of the contention access period of IEEE 802.15.4 MAC. ACM Transactions on Sensor Network, 3(1), Aricle 4. Ramachandran, I., Das, A. K., & Roy, S. (2007). Analysis of the contention access period of IEEE 802.15.4 MAC. ACM Transactions on Sensor Network, 3(1), Aricle 4.
4.
go back to reference Pollin, S., Ergen, M., Ergen, S., Bougard, B., Der Perre, L., Moerman, I., Bahai, A., Varaiya, P., & Catthoor, F. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(9), 3359–3371.CrossRef Pollin, S., Ergen, M., Ergen, S., Bougard, B., Der Perre, L., Moerman, I., Bahai, A., Varaiya, P., & Catthoor, F. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(9), 3359–3371.CrossRef
5.
go back to reference Singh, C., Kumar, A., & Ameer, P. (2008). Performance evaluation of an IEEE 802.15.4 sensor network with a star topology. Wireless Networks, 14(4), 543–568.CrossRef Singh, C., Kumar, A., & Ameer, P. (2008). Performance evaluation of an IEEE 802.15.4 sensor network with a star topology. Wireless Networks, 14(4), 543–568.CrossRef
6.
go back to reference He, J., Tang, Z., Chen, H. H., & Zhang, Q. (2009). An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA networks. IEEE Transactions on Wireless Communications, 8(1), 440–448.CrossRef He, J., Tang, Z., Chen, H. H., & Zhang, Q. (2009). An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA networks. IEEE Transactions on Wireless Communications, 8(1), 440–448.CrossRef
7.
go back to reference Tobagi, F., & Kleinrock, L. (1975) Packet switching in radio channels: Part II—the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.CrossRefMATH Tobagi, F., & Kleinrock, L. (1975) Packet switching in radio channels: Part II—the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.CrossRefMATH
8.
go back to reference Tseng, H.-W., Yang, S.-C., Yeh, P.-C., & Pang, A.-C. (2011). A cross-layer scheme for solving hidden device problem in IEEE 802.15.4 wireless sensor networks. IEEE Sensors Journal, 11(2), 493–504.CrossRef Tseng, H.-W., Yang, S.-C., Yeh, P.-C., & Pang, A.-C. (2011). A cross-layer scheme for solving hidden device problem in IEEE 802.15.4 wireless sensor networks. IEEE Sensors Journal, 11(2), 493–504.CrossRef
9.
go back to reference Pešović, U., Mohorko, J., Benkič, K., & Čučej, Z. (2009). Effect of hidden nodes in IEEE 802.15.4/ZigBee wireless sensor networks. In Proceedings of 17th telecommunications forum (TELFOR), 161–164. Pešović, U., Mohorko, J., Benkič, K., & Čučej, Z. (2009). Effect of hidden nodes in IEEE 802.15.4/ZigBee wireless sensor networks. In Proceedings of 17th telecommunications forum (TELFOR), 161–164.
10.
go back to reference Harthikote-Matha, M., Banka, T., & Jayasumana, A. P. (2007). Performance degradation of IEEE 802.15.4 slotted CSMA/CA due to hidden nodes. In Proceedings of conference on local computer networks (LCN), pp. 264–266. Harthikote-Matha, M., Banka, T., & Jayasumana, A. P. (2007). Performance degradation of IEEE 802.15.4 slotted CSMA/CA due to hidden nodes. In Proceedings of conference on local computer networks (LCN), pp. 264–266.
11.
go back to reference Woon, W. T. H., & Wan, T. C. (2007). Performance evaluation of IEEE 802.15.4 ad-hoc wireless sensor networks: Simulation approach. In Proceedings of IEEE international conference on systems, man and cybernetics, vol. 2, pp. 1443–1448. Woon, W. T. H., & Wan, T. C. (2007). Performance evaluation of IEEE 802.15.4 ad-hoc wireless sensor networks: Simulation approach. In Proceedings of IEEE international conference on systems, man and cybernetics, vol. 2, pp. 1443–1448.
12.
go back to reference Goyal, M., Rohm, D., Xie, W., Hosseini, S., Trivedi, K., Bashir, Y., & Divjak, A. (2011). A stochastic model for beaconless IEEE 802.15.4 MAC operation. Computer Communications, 34(12), 1460–1474.CrossRef Goyal, M., Rohm, D., Xie, W., Hosseini, S., Trivedi, K., Bashir, Y., & Divjak, A. (2011). A stochastic model for beaconless IEEE 802.15.4 MAC operation. Computer Communications, 34(12), 1460–1474.CrossRef
13.
go back to reference Di Marco, P., Park, P., Fischione, C., & Johansson, K. (2010). Analytical modelling of IEEE 802.15.4 for multi-hop networks with heterogeneous traffic and hidden terminals. In Proceedings of IEEE global telecommunications conference (GLOBECOM), pp. 1–6. Di Marco, P., Park, P., Fischione, C., & Johansson, K. (2010). Analytical modelling of IEEE 802.15.4 for multi-hop networks with heterogeneous traffic and hidden terminals. In Proceedings of IEEE global telecommunications conference (GLOBECOM), pp. 1–6.
14.
go back to reference Di Marco, P., Park, P., Fischione, C., & Johansson, K. (2012). Analytical modelling of multi-hop IEEE 802.15.4 networks. IEEE Transactions on Vehicular Technology, 61(7), 3191–3208.CrossRef Di Marco, P., Park, P., Fischione, C., & Johansson, K. (2012). Analytical modelling of multi-hop IEEE 802.15.4 networks. IEEE Transactions on Vehicular Technology, 61(7), 3191–3208.CrossRef
15.
go back to reference IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2007). IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2007).
16.
go back to reference Wu, H., Zhu, F., Zhang, Q., & Niu, Z. (2006). Analysis of IEEE 802.11 DCF with hidden terminals. In Proceedings of IEEE global telecommunications conference (GLOBECOM), pp. 1–5. Wu, H., Zhu, F., Zhang, Q., & Niu, Z. (2006). Analysis of IEEE 802.11 DCF with hidden terminals. In Proceedings of IEEE global telecommunications conference (GLOBECOM), pp. 1–5.
17.
go back to reference Hung, K.-L., & Bensaou, B. (2011). Throughput analysis and bandwidth allocation for IEEE 802.11 WLAN with hidden terminals. Journal of Parallel and Distributed Computing, 71(9), 1201–1214.CrossRefMATH Hung, K.-L., & Bensaou, B. (2011). Throughput analysis and bandwidth allocation for IEEE 802.11 WLAN with hidden terminals. Journal of Parallel and Distributed Computing, 71(9), 1201–1214.CrossRefMATH
18.
go back to reference Kim, T., & Lim, J.-T. (2009). Throughput analysis considering coupling effect in IEEE 802.11 networks with hidden stations. IEEE Communications Letters, 13(3), 175–177.CrossRef Kim, T., & Lim, J.-T. (2009). Throughput analysis considering coupling effect in IEEE 802.11 networks with hidden stations. IEEE Communications Letters, 13(3), 175–177.CrossRef
19.
go back to reference Yang, J. W., Kwon, J. K., Hwang, H. Y., & Sung, D. K. (2009). Goodput analysis of a WLAN with hidden nodes under a non-saturated condition. IEEE Transactions on Wireless Communications, 8(5), 2259–2264.CrossRef Yang, J. W., Kwon, J. K., Hwang, H. Y., & Sung, D. K. (2009). Goodput analysis of a WLAN with hidden nodes under a non-saturated condition. IEEE Transactions on Wireless Communications, 8(5), 2259–2264.CrossRef
20.
go back to reference Ekici, O., & Yongacoglu, A. (2008). IEEE 802.11a throughput performance with hidden nodes. IEEE Communications Letters, 12(6), 465–467.CrossRef Ekici, O., & Yongacoglu, A. (2008). IEEE 802.11a throughput performance with hidden nodes. IEEE Communications Letters, 12(6), 465–467.CrossRef
21.
go back to reference Ray, S., Starobinski, D., & Carruthers, J. B. (2005). Performance of wireless networks with hidden nodes: A queuing-theoretic analysis. Computer Communications, 28(10), 1179–1192.CrossRef Ray, S., Starobinski, D., & Carruthers, J. B. (2005). Performance of wireless networks with hidden nodes: A queuing-theoretic analysis. Computer Communications, 28(10), 1179–1192.CrossRef
22.
go back to reference Wijetunge, S., Gunawardana, U., & Liyanapathirana, R. (2012).Investigation of data transmission reliability of IEEE 802.15.4 based wireless sensor networks with synchronised periodic data. In Proceedings of the international conference on computer and information sciences (ICCIS), vol. 2, pp. 619–624. Wijetunge, S., Gunawardana, U., & Liyanapathirana, R. (2012).Investigation of data transmission reliability of IEEE 802.15.4 based wireless sensor networks with synchronised periodic data. In Proceedings of the international conference on computer and information sciences (ICCIS), vol. 2, pp. 619–624.
23.
go back to reference Wijetunge, S., Gunawardana, U., & Liyanapathirana, R. (2011). Throughput analysis of IEEE 802.15.4 MAC protocol in the presence of hidden nodes. In Proceedings of 11th international symposium on communications and information technologies (ISCIT), pp. 303–308. Wijetunge, S., Gunawardana, U., & Liyanapathirana, R. (2011). Throughput analysis of IEEE 802.15.4 MAC protocol in the presence of hidden nodes. In Proceedings of 11th international symposium on communications and information technologies (ISCIT), pp. 303–308.
25.
go back to reference Bencini, L., Collodi, G., Di Palma, D., Manes, G., & Manes, A. (2010). An embedded wireless sensor network system for cultural heritage monitoring. In Proceedings of fourth international conference on sensor technologies and applications (SENSORCOMM), pp. 185–190. Bencini, L., Collodi, G., Di Palma, D., Manes, G., & Manes, A. (2010). An embedded wireless sensor network system for cultural heritage monitoring. In Proceedings of fourth international conference on sensor technologies and applications (SENSORCOMM), pp. 185–190.
26.
go back to reference Liang, L., Huang, L., Jiang, X., & Yao, Y. (2008). Design and implementation of wireless smart-home sensor network based on ZigBee protocol. In Proceedings of international conference on communications, circuits and systems (ICCCAS), pp. 434–438. Liang, L., Huang, L., Jiang, X., & Yao, Y. (2008). Design and implementation of wireless smart-home sensor network based on ZigBee protocol. In Proceedings of international conference on communications, circuits and systems (ICCCAS), pp. 434–438.
27.
go back to reference Franceschinis, M., Spirito, M., Tomasi, R., Ossini, G., & Pidala, M. (2008). Using WSN technology for industrial monitoring: A real case. In Proceedings of second international conference on sensor technologies and applications (SENSORCOMM), pp. 282–287. Franceschinis, M., Spirito, M., Tomasi, R., Ossini, G., & Pidala, M. (2008). Using WSN technology for industrial monitoring: A real case. In Proceedings of second international conference on sensor technologies and applications (SENSORCOMM), pp. 282–287.
28.
go back to reference Hwang, L., Sheu, S., Shih, Y., & Cheng, Y. (2005). Grouping strategy for solving hidden node problem in IEEE 802.15.4 LR-WPAN. In Proceedings of first international conference on wireless internet, pp. 26–32. Hwang, L., Sheu, S., Shih, Y., & Cheng, Y. (2005). Grouping strategy for solving hidden node problem in IEEE 802.15.4 LR-WPAN. In Proceedings of first international conference on wireless internet, pp. 26–32.
29.
go back to reference Kouba, A., Severino, R., Alves, M., & Tovar, E. (2009). Improving quality-of-service in wireless sensor networks by mitigating hidden-node collisions. IEEE Transactions on Industrial Informatics, 5(3), 299–313.CrossRef Kouba, A., Severino, R., Alves, M., & Tovar, E. (2009). Improving quality-of-service in wireless sensor networks by mitigating hidden-node collisions. IEEE Transactions on Industrial Informatics, 5(3), 299–313.CrossRef
30.
go back to reference Golmie, N., Cypher, D., & Rebala, O. (2005). Performance nalysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266–1275. Golmie, N., Cypher, D., & Rebala, O. (2005). Performance nalysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266–1275.
Metadata
Title
Throughput analysis of IEEE 802.15.4 beacon-enabled MAC protocol in the presence of hidden nodes
Authors
S. Wijetunge
U. Gunawardana
R. Liyanapathirana
Publication date
01-10-2014
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2014
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-013-0637-2

Other articles of this Issue 7/2014

Wireless Networks 7/2014 Go to the issue