Skip to main content
Top
Published in: Wireless Networks 5/2019

12-02-2018

Throughput analysis of wireless-powered decode-and-forward relay systems with interference

Authors: Azar Hakimi, Mohammadali Mohammadi, Zahra Mobini

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the throughput of a wireless-powered dual-hop relaying system with the presence of co-channel interference. Specifically, an energy-constrained source node communicates with a destination node through an energy-constrained decode-and-forward relay node. Considering a time-splitting approach, both source and relay are first powered by a dedicated power beacon (PB), whereas the relay further exploit the benefit from the interfering signals as a plentiful power supply. Then, source transmits information to the destination with the help of the relay. The instantaneous throughput of the system is maximized by optimizing the time-split parameter. In order to determine the average throughput of the system in delay-limited transmission mode, analytical expressions for the outage probability are derived. In addition, we present asymptotic outage expressions under strong interference conditions. Our results, reveal that by energy harvesting from the interfering signals at the relay, the instantaneous throughput is increased compared with the case where the relay is only powered by the PB. Moreover, under strong interference conditions the optimal time-split that maximize the throughput of the the delay-limited transmission mode is much higher than that for weak interference condition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This case is also particularly relevant to frequency-division relay systems where the relay and the destination experience different interference patterns [36].
 
Literature
1.
go back to reference Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef
2.
go back to reference Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRef Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRef
3.
go back to reference Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef
4.
go back to reference Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef
5.
go back to reference Huang, K., & Lau, V. K. N. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. K. N. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
6.
go back to reference Zhong, C., Chen, X., Zhang, Z., & Karagiannidis, G. K. (2015). Wireless-powered communications: Performance analysis and optimization. IEEE Transactions on Communications, 63(12), 5178–5190.CrossRef Zhong, C., Chen, X., Zhang, Z., & Karagiannidis, G. K. (2015). Wireless-powered communications: Performance analysis and optimization. IEEE Transactions on Communications, 63(12), 5178–5190.CrossRef
7.
go back to reference Chen, H., Li, Y., Rebelatto, J. L., Filho, B. F. U., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRefMATH Chen, H., Li, Y., Rebelatto, J. L., Filho, B. F. U., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRefMATH
8.
go back to reference Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings on IEEE international symposium information theory (ISIT’08), Toronto, ON, Canada pp. 1612–1616. Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings on IEEE international symposium information theory (ISIT’08), Toronto, ON, Canada pp. 1612–1616.
9.
go back to reference Huang, S., Yao, Y., & Feng, Z. (2018). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Networks, 24(2), 453–462.CrossRef Huang, S., Yao, Y., & Feng, Z. (2018). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Networks, 24(2), 453–462.CrossRef
10.
go back to reference Pabst, R., et al. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine, 42(9), 80–89.CrossRef Pabst, R., et al. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine, 42(9), 80–89.CrossRef
11.
go back to reference Mohammadi, M., Mobini, Z., Ardebilipour, M., & Mahboobi, B. (2013). Performance analysis of generic amplify-and-forward cooperative networks over asymmetric fading channels. Wireless Personal Communications, 72(1), 49–70.CrossRef Mohammadi, M., Mobini, Z., Ardebilipour, M., & Mahboobi, B. (2013). Performance analysis of generic amplify-and-forward cooperative networks over asymmetric fading channels. Wireless Personal Communications, 72(1), 49–70.CrossRef
12.
go back to reference Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
13.
go back to reference Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.CrossRef Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.CrossRef
14.
go back to reference Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.CrossRef
15.
go back to reference Krikidis, I. (2015). Relay selection in wireless powered cooperative networks with energy storage. IEEE Journal on Selected Areas in Communications, 33(12), 2596–2610.CrossRef Krikidis, I. (2015). Relay selection in wireless powered cooperative networks with energy storage. IEEE Journal on Selected Areas in Communications, 33(12), 2596–2610.CrossRef
16.
go back to reference Zhong, C., Suraweera, H. A., Zheng, G., & Krikidis, Z. Z. Ioannis. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62, 3447–3461.CrossRef Zhong, C., Suraweera, H. A., Zheng, G., & Krikidis, Z. Z. Ioannis. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62, 3447–3461.CrossRef
17.
go back to reference Mohammadi, M., Chalise, B. K., Suraweera, H. A., Zhong, C., & Zheng, I. K. Gan. (2016). Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Transactions on Communications, 64, 1769–1785.CrossRef Mohammadi, M., Chalise, B. K., Suraweera, H. A., Zhong, C., & Zheng, I. K. Gan. (2016). Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Transactions on Communications, 64, 1769–1785.CrossRef
18.
go back to reference Luo, S., & Teh, K. C. (2016). Throughput maximization for wireless-powered buffer-aided cooperative relaying systems. IEEE Transactions on Communications, 64(6), 2299–2310.CrossRef Luo, S., & Teh, K. C. (2016). Throughput maximization for wireless-powered buffer-aided cooperative relaying systems. IEEE Transactions on Communications, 64(6), 2299–2310.CrossRef
19.
go back to reference Nomikos, N., Charalambous, T., Krikidis, I., Skoutas, D. N., Vouyioukas, D., Johansson, M., et al. (2016). A survey on buffer-aided relay selection. IEEE Communications Surveys & Tutorials, 18(2), 1073–1097.CrossRef Nomikos, N., Charalambous, T., Krikidis, I., Skoutas, D. N., Vouyioukas, D., Johansson, M., et al. (2016). A survey on buffer-aided relay selection. IEEE Communications Surveys & Tutorials, 18(2), 1073–1097.CrossRef
20.
go back to reference Liu, K.-H. (2014). Selection cooperation using RF energy harvesting relays with finite energy buffer. In Proceedings of IEEEE wireless communication network conference (WCNC’14). Istanbul, Turkey pp. 2156–2161. Liu, K.-H. (2014). Selection cooperation using RF energy harvesting relays with finite energy buffer. In Proceedings of IEEEE wireless communication network conference (WCNC’14). Istanbul, Turkey pp. 2156–2161.
21.
go back to reference Rajaram, A., Jayakody, D. N. K., Srinivasan, K., Chen, B., & Sharma, V. (2017). Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system. IEEE Access, 5, 16084–16099.CrossRef Rajaram, A., Jayakody, D. N. K., Srinivasan, K., Chen, B., & Sharma, V. (2017). Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system. IEEE Access, 5, 16084–16099.CrossRef
22.
go back to reference Mobini, Z., Mohammadi, M., & Tellambura, C. (2017). Security enhancement of wireless networks with wireless-powered full-duplex relay and friendly jammer nodes. In Proceedings on IEEE international conference communication workshop (ICCW’17), Paris, France pp. 1329–1334. Mobini, Z., Mohammadi, M., & Tellambura, C. (2017). Security enhancement of wireless networks with wireless-powered full-duplex relay and friendly jammer nodes. In Proceedings on IEEE international conference communication workshop (ICCW’17), Paris, France pp. 1329–1334.
23.
go back to reference Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2016). Outage performance of underlay multihop cognitive relay networks with energy harvesting. IEEE Communications Letters, 20(6), 1148–1151.CrossRef Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2016). Outage performance of underlay multihop cognitive relay networks with energy harvesting. IEEE Communications Letters, 20(6), 1148–1151.CrossRef
24.
go back to reference Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.CrossRef Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.CrossRef
25.
go back to reference Mohammadi, M., & Mobini, Z. (June 2017). Wireless-powered cooperative systems with relay selection in spectrum-sharing scenario. In Proceedings on 5th international black sea conference on communication and networking (BlackSeaCom’17), Istanbul, Turkey pp. 1–5. Mohammadi, M., & Mobini, Z. (June 2017). Wireless-powered cooperative systems with relay selection in spectrum-sharing scenario. In Proceedings on 5th international black sea conference on communication and networking (BlackSeaCom’17), Istanbul, Turkey pp. 1–5.
26.
go back to reference Zheng, G., Krikidis, I., Masouros, C., Timotheou, S., Toumpakaris, D., & Ding, Z. (2014). Rethinking the role of interference in wireless networks. IEEE Communications Magazine, 52(11), 152–158.CrossRef Zheng, G., Krikidis, I., Masouros, C., Timotheou, S., Toumpakaris, D., & Ding, Z. (2014). Rethinking the role of interference in wireless networks. IEEE Communications Magazine, 52(11), 152–158.CrossRef
27.
go back to reference Timotheou, S., Zheng, G., Masouros, C., & Krikidis, I. (2016). Exploiting constructive interference for simultaneous wireless information and power transfer in multiuser downlink systems. IEEE Journal on Selected Areas in Communications, 34(5), 1772–1784.CrossRef Timotheou, S., Zheng, G., Masouros, C., & Krikidis, I. (2016). Exploiting constructive interference for simultaneous wireless information and power transfer in multiuser downlink systems. IEEE Journal on Selected Areas in Communications, 34(5), 1772–1784.CrossRef
28.
go back to reference Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access, 5, 10403–10421.CrossRef Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access, 5, 10403–10421.CrossRef
29.
go back to reference Gu, Y., & Aïssa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.CrossRef Gu, Y., & Aïssa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.CrossRef
30.
go back to reference Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63, 14001418. Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63, 14001418.
31.
go back to reference Chen, Y. (2015). Energy-harvesting AF relaying in the presence of interference and Nakagami-\(m\) fading. IEEE Transactions on Wireless Communications, 15(2), 1008–1017.CrossRef Chen, Y. (2015). Energy-harvesting AF relaying in the presence of interference and Nakagami-\(m\) fading. IEEE Transactions on Wireless Communications, 15(2), 1008–1017.CrossRef
32.
go back to reference Salari, S., Kim, I.-M., Kim, D. I., & Chan, F. (2017). Joint EH time allocation and distributed beamforming in interference-limited two-way networks with EH-based relays. IEEE Transactions on Wireless Communications, 16(10), 6395–6408.CrossRef Salari, S., Kim, I.-M., Kim, D. I., & Chan, F. (2017). Joint EH time allocation and distributed beamforming in interference-limited two-way networks with EH-based relays. IEEE Transactions on Wireless Communications, 16(10), 6395–6408.CrossRef
33.
go back to reference Kalamkar, S. S., & Banerjee, A. (2017). Interference-aided energy harvesting: Cognitive relaying with multiple primary transceivers. IEEE Transactions on Cognitive Communications and Networking, 3(3), 313–327.CrossRef Kalamkar, S. S., & Banerjee, A. (2017). Interference-aided energy harvesting: Cognitive relaying with multiple primary transceivers. IEEE Transactions on Cognitive Communications and Networking, 3(3), 313–327.CrossRef
34.
go back to reference Zhong, C., Zheng, G., Zhang, Z., & Karagiannidis, G. K. (2015). Optimum wirelessly powered relaying. IEEE Signal Processing Letters, 22(10), 1728–1732. Zhong, C., Zheng, G., Zhang, Z., & Karagiannidis, G. K. (2015). Optimum wirelessly powered relaying. IEEE Signal Processing Letters, 22(10), 1728–1732.
35.
go back to reference Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). Cambridge: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). Cambridge: Academic Press.MATH
36.
go back to reference Zhu, G., Zhong, C., Suraweera, H. A., Zhang, Z., & Yuen, C. (2014). Outage probability of dual-hop multiple antenna AF systems with linear processing in the presence of co-channel interference. IEEE Transactions on Wireless Communications, 13(4), 2308–2321.CrossRef Zhu, G., Zhong, C., Suraweera, H. A., Zhang, Z., & Yuen, C. (2014). Outage probability of dual-hop multiple antenna AF systems with linear processing in the presence of co-channel interference. IEEE Transactions on Wireless Communications, 13(4), 2308–2321.CrossRef
37.
go back to reference Liang, H., Zhong, C., Suraweera, H. A., Zheng, G., & Zhang, Z. (2017). Optimization and analysis of wireless powered multi-antenna cooperative systems. IEEE Transactions on Wireless Communications, 16(5), 3267–3281.CrossRef Liang, H., Zhong, C., Suraweera, H. A., Zheng, G., & Zhang, Z. (2017). Optimization and analysis of wireless powered multi-antenna cooperative systems. IEEE Transactions on Wireless Communications, 16(5), 3267–3281.CrossRef
38.
go back to reference Amari, S., & Misra, R. (1997). Closed-form expressions for distribution of sum of exponential random variables. IEEE Transactions on Reliability, 64(4), 519–552.CrossRef Amari, S., & Misra, R. (1997). Closed-form expressions for distribution of sum of exponential random variables. IEEE Transactions on Reliability, 64(4), 519–552.CrossRef
39.
go back to reference Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals and series, Vol. 3: More special functions. Philadelphia: Gordon and Breach Science Publishers.MATH Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals and series, Vol. 3: More special functions. Philadelphia: Gordon and Breach Science Publishers.MATH
40.
go back to reference Zhang, X., Zhang, Z., Xing, J., Yu, R., Zhang, P., & Wang, W. (2015). Exact outage analysis in cognitive two-way relay networks with opportunistic relay selection under primary user’s interference. IEEE Transactions on Vehicular Technology, 64(6), 2502–2511.CrossRef Zhang, X., Zhang, Z., Xing, J., Yu, R., Zhang, P., & Wang, W. (2015). Exact outage analysis in cognitive two-way relay networks with opportunistic relay selection under primary user’s interference. IEEE Transactions on Vehicular Technology, 64(6), 2502–2511.CrossRef
Metadata
Title
Throughput analysis of wireless-powered decode-and-forward relay systems with interference
Authors
Azar Hakimi
Mohammadali Mohammadi
Zahra Mobini
Publication date
12-02-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1678-3

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue