Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 18/2019

28-08-2019

Ti-treatment and Co–Pi modification of hematite-based photoanodes for improved photoelectrochemical water oxidation

Authors: Changhai Liu, Yu Xu, Heng Luo, Chao Zhang, Wenchang Wang, Zhidong Chen

Published in: Journal of Materials Science: Materials in Electronics | Issue 18/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hematite has been recognized as a promising photoanode materials for the photoelectrochemical water splitting application. A Co–Pi/Fe2TiO5/Fe2O3 composite film has been fabricated by photo-assisted electrodeposition of Co–Pi nanoparticles on the surface of Ti-treated Fe2O3 nanorod arrays, grown perpendicularly on the FTO substrate via one-step hydrothermal method. The films were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and UV–vis diffuse reflectance spectroscopy. The photocurrent response of obtained photoanode with an enhanced photocurrent density of 1.09 and 0.75 mA/cm2 under front-side and back-side illumination compared to Fe2TiO5/Fe2O3, Co–Pi/Fe2O3, and Co–Pi/Fe2TiO5/Fe2O3, due to the suppressed charge carrier recombination and water oxidation dynamics, further indicating that the different effect for the improvement of PEC performance for the front or back sides. Meanwhile, the onset potential for front-side are also improved compared to back-side illumination. The present work demonstrates an exploration for the possible mechanism of front-side and back-side illumination effect via surface modification treatment for the improvement of PEC water splitting application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2017)CrossRef J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2017)CrossRef
2.
go back to reference Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudom, M. Zhong, C.Z. Wang, Z.H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y.B. Li, L.D. Sharp, A. Kudo, T. Yamada, K. Domen, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016)CrossRef Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudom, M. Zhong, C.Z. Wang, Z.H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y.B. Li, L.D. Sharp, A. Kudo, T. Yamada, K. Domen, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016)CrossRef
3.
go back to reference J. Qi, W. Zhang, R. Cao, Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 8, 1701620 (2018)CrossRef J. Qi, W. Zhang, R. Cao, Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 8, 1701620 (2018)CrossRef
4.
go back to reference K. Sivula, R.V.D. Krol, Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016)CrossRef K. Sivula, R.V.D. Krol, Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016)CrossRef
5.
go back to reference Y. Yan, R.W. Crisp, J. Gu, B.D. Chernomordik, G.F. Pach, A.R. Marshall, J.A. Turner, M.C. Beard, Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2, 17052 (2017)CrossRef Y. Yan, R.W. Crisp, J. Gu, B.D. Chernomordik, G.F. Pach, A.R. Marshall, J.A. Turner, M.C. Beard, Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2, 17052 (2017)CrossRef
6.
go back to reference R.G. Li, Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 38, 5–12 (2017)CrossRef R.G. Li, Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 38, 5–12 (2017)CrossRef
7.
go back to reference I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017)CrossRef I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017)CrossRef
8.
go back to reference C.H. Liu, Y.Y. Qiu, F. Wang, K. Wang, Q. Liang, Z.D. Chen, Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interfaces 4, 1700681 (2017)CrossRef C.H. Liu, Y.Y. Qiu, F. Wang, K. Wang, Q. Liang, Z.D. Chen, Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interfaces 4, 1700681 (2017)CrossRef
9.
go back to reference S.C. Wang, G. Liu, L.Z. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019)CrossRef S.C. Wang, G. Liu, L.Z. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019)CrossRef
10.
go back to reference G. Segev, H. Dotan, K.D. Malviya, A. Kay, M.T. Mayer, M. Grätzel, A. Rothschild, High solar flux concentration water splitting with hematite (α-Fe2O3) photoanodes. Adv. Energy Mater. 6, 1500817 (2016)CrossRef G. Segev, H. Dotan, K.D. Malviya, A. Kay, M.T. Mayer, M. Grätzel, A. Rothschild, High solar flux concentration water splitting with hematite (α-Fe2O3) photoanodes. Adv. Energy Mater. 6, 1500817 (2016)CrossRef
11.
go back to reference C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10, 37 (2018)CrossRef C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10, 37 (2018)CrossRef
12.
go back to reference R.F. Chong, Y.Q. Du, Z.X. Chang, Y.S. Jia, Y. Qiao, S.H. Liu, Y. Liu, Y.M. Zhou, D.L. Li, 2D Co-incorporated hydroxyapatite nanoarchitecture as a potential efficient oxygen evolution cocatalyst for boosting photoelectrochemical water splitting on Fe2O3 photoanode. Appl. Catal. B 250, 224–233 (2019)CrossRef R.F. Chong, Y.Q. Du, Z.X. Chang, Y.S. Jia, Y. Qiao, S.H. Liu, Y. Liu, Y.M. Zhou, D.L. Li, 2D Co-incorporated hydroxyapatite nanoarchitecture as a potential efficient oxygen evolution cocatalyst for boosting photoelectrochemical water splitting on Fe2O3 photoanode. Appl. Catal. B 250, 224–233 (2019)CrossRef
13.
go back to reference P. Sharma, J.W. Jang, J.S. Lee, Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 Photoanode. ChemCatChem 11, 157–179 (2019)CrossRef P. Sharma, J.W. Jang, J.S. Lee, Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 Photoanode. ChemCatChem 11, 157–179 (2019)CrossRef
14.
go back to reference A. Banerjee, B. Mondal, A. Verma, V.R. Satsangi, R. Shrivastav, A. Dey, S. Dass, Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst. J. Catal. 352, 83–92 (2017)CrossRef A. Banerjee, B. Mondal, A. Verma, V.R. Satsangi, R. Shrivastav, A. Dey, S. Dass, Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst. J. Catal. 352, 83–92 (2017)CrossRef
15.
go back to reference Z.M. Zhang, C.T. Gao, Y.X. Li, W.H. Han, W.B. Fu, Y.M. He, E.Q. Xie, Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy 30, 892–899 (2016)CrossRef Z.M. Zhang, C.T. Gao, Y.X. Li, W.H. Han, W.B. Fu, Y.M. He, E.Q. Xie, Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy 30, 892–899 (2016)CrossRef
16.
go back to reference D. Chen, Z.F. Liu, Dual-axial gradient doping (Zr and Sn) on hematite for promoting charge separation in photoelectrochemical water splitting. ChemSusChem 11, 3438–3448 (2018)CrossRef D. Chen, Z.F. Liu, Dual-axial gradient doping (Zr and Sn) on hematite for promoting charge separation in photoelectrochemical water splitting. ChemSusChem 11, 3438–3448 (2018)CrossRef
17.
go back to reference R. Zhang, Y.Y. Fang, T. Chen, F.L. Qu, Z.A. Liu, G. Du, A.M. Asiri, T. Gao, X.P. Sun, Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods array by S doping. ACS Sustain. Chem. Eng. 5, 7502–7506 (2017)CrossRef R. Zhang, Y.Y. Fang, T. Chen, F.L. Qu, Z.A. Liu, G. Du, A.M. Asiri, T. Gao, X.P. Sun, Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods array by S doping. ACS Sustain. Chem. Eng. 5, 7502–7506 (2017)CrossRef
18.
go back to reference D.K. Zhong, D.R. Gamelin, Photoelectrochemical water oxidation by cobalt catalyst (“Co − Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202–4207 (2010)CrossRef D.K. Zhong, D.R. Gamelin, Photoelectrochemical water oxidation by cobalt catalyst (“Co − Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202–4207 (2010)CrossRef
19.
go back to reference B. Klahr, S. Gimenez, F.F. Santiago, J. Bisquert, T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012)CrossRef B. Klahr, S. Gimenez, F.F. Santiago, J. Bisquert, T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012)CrossRef
20.
go back to reference Y.F. Xu, H.S. Rao, B.X. Chen, Y.L. Hong, Y. Chen, D.B. Kuang, C.Y. Su, Achieving highly efficient photoelectrochemical water oxidation with a TiCl4 treated 3D antimony-doped SnO2 macropore/branched α-Fe2O3 nanorod heterojunction photoanode. Adv. Sci. 2, 1500049 (2015)CrossRef Y.F. Xu, H.S. Rao, B.X. Chen, Y.L. Hong, Y. Chen, D.B. Kuang, C.Y. Su, Achieving highly efficient photoelectrochemical water oxidation with a TiCl4 treated 3D antimony-doped SnO2 macropore/branched α-Fe2O3 nanorod heterojunction photoanode. Adv. Sci. 2, 1500049 (2015)CrossRef
21.
go back to reference P. Zhang, T. Wang, X.X. Chang, L. Zhang, J.L. Gong, Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew. Chem. Int. Ed. 55, 5851–5855 (2016)CrossRef P. Zhang, T. Wang, X.X. Chang, L. Zhang, J.L. Gong, Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew. Chem. Int. Ed. 55, 5851–5855 (2016)CrossRef
22.
go back to reference L.X. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, L.H. Wong, Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116, 13884–13889 (2012)CrossRef L.X. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, L.H. Wong, Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116, 13884–13889 (2012)CrossRef
23.
go back to reference M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Lwase, Q.X. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, Surface modification of CoOx loaded BiVO4 Photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015)CrossRef M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Lwase, Q.X. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, Surface modification of CoOx loaded BiVO4 Photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015)CrossRef
24.
go back to reference J.Y. Kim, D.H. Youn, K. Kang, J.S. Lee, Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew. Chem. Int. Ed. 55(36), 10854–10858 (2016)CrossRef J.Y. Kim, D.H. Youn, K. Kang, J.S. Lee, Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew. Chem. Int. Ed. 55(36), 10854–10858 (2016)CrossRef
25.
go back to reference J.W. Jang, C. Du, Y.F. Ye, Y.J. Lin, X.H. Yao, J. Thorne, E. Liu, G. McMahon, J.F. Zhu, A. Javey, J.H. Guo, D.W. Wang, Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447–7452 (2015)CrossRef J.W. Jang, C. Du, Y.F. Ye, Y.J. Lin, X.H. Yao, J. Thorne, E. Liu, G. McMahon, J.F. Zhu, A. Javey, J.H. Guo, D.W. Wang, Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447–7452 (2015)CrossRef
26.
go back to reference Y. Yang, M. Forster, Y. Ling, G.M. Wang, T. Zhai, Y.X. Tong, J.A. Cowan, Y. Li, Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem. Int. Ed. 55, 3403–3407 (2016)CrossRef Y. Yang, M. Forster, Y. Ling, G.M. Wang, T. Zhai, Y.X. Tong, J.A. Cowan, Y. Li, Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem. Int. Ed. 55, 3403–3407 (2016)CrossRef
27.
go back to reference Z.W. Fu, T.F. Jiang, Z.P. Liu, D.J. Wang, L.L. Wang, T.F. Xie, Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358–363 (2016)CrossRef Z.W. Fu, T.F. Jiang, Z.P. Liu, D.J. Wang, L.L. Wang, T.F. Xie, Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358–363 (2016)CrossRef
28.
go back to reference D.W. Ding, B.T. Dong, J. Liang, H. Zhou, Y.C. Pang, S.J. Ding, Solvothermal-etching process induced Ti-doped Fe2O3 thin film with low turn-on voltage for water splitting. ACS Appl. Mater. Interfaces 8, 24573–24578 (2016)CrossRef D.W. Ding, B.T. Dong, J. Liang, H. Zhou, Y.C. Pang, S.J. Ding, Solvothermal-etching process induced Ti-doped Fe2O3 thin film with low turn-on voltage for water splitting. ACS Appl. Mater. Interfaces 8, 24573–24578 (2016)CrossRef
29.
go back to reference G. Liu, Y. Zhao, R. Yao, N. Li, M. Wang, H. Ren, J. Li, C. Zhao, Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers. Chem. Eng. J. 355, 49–57 (2019)CrossRef G. Liu, Y. Zhao, R. Yao, N. Li, M. Wang, H. Ren, J. Li, C. Zhao, Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers. Chem. Eng. J. 355, 49–57 (2019)CrossRef
30.
go back to reference P.S. Bassi, R.P. Antony, P.P. Boix, Y.N. Fang, J. Barber, L.H. Wong, Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy 22, 310–318 (2016)CrossRef P.S. Bassi, R.P. Antony, P.P. Boix, Y.N. Fang, J. Barber, L.H. Wong, Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy 22, 310–318 (2016)CrossRef
31.
go back to reference C.C. Li, T. Wang, Z.B. Luo, S.S. Liu, J.L. Gong, Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 12, 3415–3422 (2016)CrossRef C.C. Li, T. Wang, Z.B. Luo, S.S. Liu, J.L. Gong, Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 12, 3415–3422 (2016)CrossRef
32.
go back to reference J.J. Deng, X.X. Lv, K.Q. Nie, X.L. Lv, X.H. Sun, J. Zhong, Lowering the onset potential of Fe2TiO5/Fe2O3 photoanodes by interface structures: F-and Rh-based treatments. ACS Catal. 7, 4062–4069 (2017)CrossRef J.J. Deng, X.X. Lv, K.Q. Nie, X.L. Lv, X.H. Sun, J. Zhong, Lowering the onset potential of Fe2TiO5/Fe2O3 photoanodes by interface structures: F-and Rh-based treatments. ACS Catal. 7, 4062–4069 (2017)CrossRef
33.
go back to reference J.H. Lin, Y.T. Yan, H.H. Wang, X.H. Zheng, Z.S. Jiang, Y.H. Wang, J.L. Qi, J. Cao, W.D. Fei, J.C. Feng, Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd. 794, 255–260 (2019)CrossRef J.H. Lin, Y.T. Yan, H.H. Wang, X.H. Zheng, Z.S. Jiang, Y.H. Wang, J.L. Qi, J. Cao, W.D. Fei, J.C. Feng, Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd. 794, 255–260 (2019)CrossRef
34.
go back to reference D.D. Lecce, R. Verrelli, D. Campanella, V. Marangon, J. Hassoun, A new CuO-Fe2O3-mesocarbon microbeads conversion anode in a high-performance lithium-Ion battery with a Li1.35Ni0.48Fe0.1Mn1.72O4 spinel cathode. ChemSusChem 10(7), 1607–1615 (2017)CrossRef D.D. Lecce, R. Verrelli, D. Campanella, V. Marangon, J. Hassoun, A new CuO-Fe2O3-mesocarbon microbeads conversion anode in a high-performance lithium-Ion battery with a Li1.35Ni0.48Fe0.1Mn1.72O4 spinel cathode. ChemSusChem 10(7), 1607–1615 (2017)CrossRef
35.
go back to reference J.G. Lv, Y. Sun, M. Zhao, L. Cao, J.Y. Xu, G. He, M. Zhang, Z.Q. Sun, Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique. Appl. Surf. Sci. 366, 348–352 (2016)CrossRef J.G. Lv, Y. Sun, M. Zhao, L. Cao, J.Y. Xu, G. He, M. Zhang, Z.Q. Sun, Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique. Appl. Surf. Sci. 366, 348–352 (2016)CrossRef
36.
go back to reference J.H. Jing, M. Cao, C.S. Wu, J. Huang, J.M. Lai, Y. Sun, L.J. Wang, Y. Shen, Chemical bath deposition of SnS nanosheet thin films for FTO/SnS/CdS/Pt photocathode. J. Alloys Compd. 726, 720–728 (2017)CrossRef J.H. Jing, M. Cao, C.S. Wu, J. Huang, J.M. Lai, Y. Sun, L.J. Wang, Y. Shen, Chemical bath deposition of SnS nanosheet thin films for FTO/SnS/CdS/Pt photocathode. J. Alloys Compd. 726, 720–728 (2017)CrossRef
37.
go back to reference Q. Yu, X.G. Meng, T. Wang, P. Li, J.H. Ye, Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv. Funct. Mater. 25, 2686–2692 (2015)CrossRef Q. Yu, X.G. Meng, T. Wang, P. Li, J.H. Ye, Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv. Funct. Mater. 25, 2686–2692 (2015)CrossRef
38.
go back to reference J.W. Huang, G.W. Hu, Y. Ding, M.C. Pang, B.C. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016)CrossRef J.W. Huang, G.W. Hu, Y. Ding, M.C. Pang, B.C. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016)CrossRef
39.
go back to reference A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, Enhanced photoelectrochemical conversion performance of ZnO quantum dots sensitized α-Fe2O3 thin films. Int. J. Hydrogen Energy 40, 5538–5592 (2015)CrossRef A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, Enhanced photoelectrochemical conversion performance of ZnO quantum dots sensitized α-Fe2O3 thin films. Int. J. Hydrogen Energy 40, 5538–5592 (2015)CrossRef
40.
go back to reference C.C. Li, A. Li, Z.B. Luo, J.J. Zhang, X.X. Chang, Z.Q. Huang, T. Wang, J.L. Gong, Surviving high-temperature calcination: ZrO2-induced hematite nanotubes for photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 56, 4150–4155 (2017)CrossRef C.C. Li, A. Li, Z.B. Luo, J.J. Zhang, X.X. Chang, Z.Q. Huang, T. Wang, J.L. Gong, Surviving high-temperature calcination: ZrO2-induced hematite nanotubes for photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 56, 4150–4155 (2017)CrossRef
41.
go back to reference V.C. Janu, G. Bahuguna, D. Laishram, K.P. Shejale, N. Kumar, R.K. Sharma, R. Gupta, Surface fluorination of α-Fe2O3 using selectfluor for enhancement in photoelectrochemical properties. Sol. Energy Mater. Sol. Cells 174, 240–247 (2018)CrossRef V.C. Janu, G. Bahuguna, D. Laishram, K.P. Shejale, N. Kumar, R.K. Sharma, R. Gupta, Surface fluorination of α-Fe2O3 using selectfluor for enhancement in photoelectrochemical properties. Sol. Energy Mater. Sol. Cells 174, 240–247 (2018)CrossRef
42.
go back to reference F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V.D. Santo, A. Naldoni, α-Fe2O3/NiOOH: an effective heterostructure for photoelectrochemical water oxidation. ACS Catal. 5, 5292–5300 (2015)CrossRef F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V.D. Santo, A. Naldoni, α-Fe2O3/NiOOH: an effective heterostructure for photoelectrochemical water oxidation. ACS Catal. 5, 5292–5300 (2015)CrossRef
43.
go back to reference A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000)CrossRef A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000)CrossRef
44.
go back to reference B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquent, Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012)CrossRef B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquent, Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012)CrossRef
Metadata
Title
Ti-treatment and Co–Pi modification of hematite-based photoanodes for improved photoelectrochemical water oxidation
Authors
Changhai Liu
Yu Xu
Heng Luo
Chao Zhang
Wenchang Wang
Zhidong Chen
Publication date
28-08-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 18/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02095-1

Other articles of this Issue 18/2019

Journal of Materials Science: Materials in Electronics 18/2019 Go to the issue