Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2016

25-02-2016 | RESEARCH PAPER

TIMP method for topology optimization of plate structures with displacement constraints under multiple loading cases

Authors: Guilian Yi, Yunkang Sui

Published in: Structural and Multidisciplinary Optimization | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper utilizes the TIMP (Transplanting ICM Ideas into Material with Penalization) method to solve topology optimization problems of plate structures with displacement constraints under multiple loading cases. Two basic perspectives embedded within the TIMP method are that, (1) one more penalty function is added besides the Young’s modulus penalty function by transplanting the ICM ideas and progresses into the SIMP (Solid Isotropic Material with Penalization) method, and (2) the definition of the artificial material design variables, as well as the idea of penalization on materials, is inherited from the SIMP method. Based on the TIMP method, complex topology optimization problems with displacement constraints are expressed explicitly by using the element weight and Young’s modulus penalty functions, and the nonlinear programming algorithm is used to get solutions. Displacement filtering is employed to eliminate the mesh-dependency and checkerboard issues, and the coarse selection of quasi-active constraint strategy is adopted to select active constraints and improve the computing efficiency. The whole solution development process is implemented into a secondary development software based on the Abaqus software by its script language Python. Two problems with a single loading case and two problems with multiple loading cases are addressed on this secondary development software. The effects of using linear and nonlinear element weight penalty functions on the convergence speed are observed through these numerical problems. The results demonstrate that the TIMP method is effective to undertake complex topology optimization problems with displacement constraints under multiple loading cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In order to avoid inactive loading cases, the loads used in Loading Cases 1 and 2 should be no less than that used in Loading Case 3 for the benchmark problems in Examples 3 and 4.
 
Literature
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
go back to reference Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
go back to reference Descamps B, Coelho RF (2013) A lower-bound formulation for the geometry and topology optimization of truss structures under multiple loading. Struct Multidiscip Optim 48(1):49–58MathSciNetCrossRefMATH Descamps B, Coelho RF (2013) A lower-bound formulation for the geometry and topology optimization of truss structures under multiple loading. Struct Multidiscip Optim 48(1):49–58MathSciNetCrossRefMATH
go back to reference EL-Sabbagh A, Akl W, Baz A (2008) Topology optimization of periodic Mindlin plates. Finite Elem Anal Des 44(8):439–449MathSciNetCrossRef EL-Sabbagh A, Akl W, Baz A (2008) Topology optimization of periodic Mindlin plates. Finite Elem Anal Des 44(8):439–449MathSciNetCrossRef
go back to reference Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH
go back to reference Hibbeler RC (2012) Structural analysis, 8th edn. Prentice Hall, Inc Hibbeler RC (2012) Structural analysis, 8th edn. Prentice Hall, Inc
go back to reference Kang Z, Wang YQ (2011) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329–342MathSciNetCrossRefMATH Kang Z, Wang YQ (2011) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329–342MathSciNetCrossRefMATH
go back to reference Kočvara M (1997) Topology optimization with displacement constraints: a bilevel programming approach. Struct Optim 14(4):256–263CrossRef Kočvara M (1997) Topology optimization with displacement constraints: a bilevel programming approach. Struct Optim 14(4):256–263CrossRef
go back to reference Liang QQ, Xie YM, Steven GP (2000) Optimal topology selection of continuum structures with displacement constraints. Comput Struct 77(6):635–644CrossRef Liang QQ, Xie YM, Steven GP (2000) Optimal topology selection of continuum structures with displacement constraints. Comput Struct 77(6):635–644CrossRef
go back to reference Liang QQ, Xie YM, Steven GP (2001) A performance index for topology and shape optimization of plate bending problems with displacement constraints. Struct Multidiscip Optim 21(5):393–399CrossRef Liang QQ, Xie YM, Steven GP (2001) A performance index for topology and shape optimization of plate bending problems with displacement constraints. Struct Multidiscip Optim 21(5):393–399CrossRef
go back to reference Long CS, Loveday PW, Groenwold AA (2009) Effects of finite element formulation on optimal plate and shell structural topologies. Finite Elem Anal Des 45(11):817–825MathSciNetCrossRef Long CS, Loveday PW, Groenwold AA (2009) Effects of finite element formulation on optimal plate and shell structural topologies. Finite Elem Anal Des 45(11):817–825MathSciNetCrossRef
go back to reference Luo Z, Yang JZ, Chen LP et al (2006) A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions. Struct Multidiscip Optim 31(1):26–39MathSciNetCrossRefMATH Luo Z, Yang JZ, Chen LP et al (2006) A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions. Struct Multidiscip Optim 31(1):26–39MathSciNetCrossRefMATH
go back to reference Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464MathSciNetCrossRef Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464MathSciNetCrossRef
go back to reference Mela K, Koski J (2012) On the equivalence of minimum compliance and stress-constrained minimum weight design of trusses under multiple loading conditions. Struct Multidiscip Optim 46(5):679–691MathSciNetCrossRefMATH Mela K, Koski J (2012) On the equivalence of minimum compliance and stress-constrained minimum weight design of trusses under multiple loading conditions. Struct Multidiscip Optim 46(5):679–691MathSciNetCrossRefMATH
go back to reference Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11CrossRef Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11CrossRef
go back to reference Pedersen NL (2001) On topology optimization of plates with prestress. Int J Numer Methods Eng 51(2):225–239CrossRefMATH Pedersen NL (2001) On topology optimization of plates with prestress. Int J Numer Methods Eng 51(2):225–239CrossRefMATH
go back to reference Seo Y, Youn S, Yeon J et al (2004) Topology optimization of inner-wall stiffener for critical buckling loads of cylindrical containers. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AlbanyCrossRef Seo Y, Youn S, Yeon J et al (2004) Topology optimization of inner-wall stiffener for critical buckling loads of cylindrical containers. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AlbanyCrossRef
go back to reference Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
go back to reference Sui YK (1996) Modeling, transformation and optimization: new developments of structural synthesis method. Dalian University of technology Press, Dalian, in Chinese Sui YK (1996) Modeling, transformation and optimization: new developments of structural synthesis method. Dalian University of technology Press, Dalian, in Chinese
go back to reference Sui YK, Peng XR (2006) The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22(1):68–75MathSciNetCrossRefMATH Sui YK, Peng XR (2006) The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22(1):68–75MathSciNetCrossRefMATH
go back to reference Sui YK, Yi GL (2013) A discussion about choosing an objective function and constraints in structural topology optimization. Proceedings of 10th World Congress on Structural and Multidisciplinary Optimization, May 24–29. Lisboa, International Society for Structural and Multidisciplinary Optimization Sui YK, Yi GL (2013) A discussion about choosing an objective function and constraints in structural topology optimization. Proceedings of 10th World Congress on Structural and Multidisciplinary Optimization, May 24–29. Lisboa, International Society for Structural and Multidisciplinary Optimization
go back to reference Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686MathSciNetCrossRefMATH Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686MathSciNetCrossRefMATH
go back to reference Yi GL (2014) Expanded SIMP method for structural topology optimization by transplanting ICM method. Dissertation, Beijing University of Technology. Yi GL (2014) Expanded SIMP method for structural topology optimization by transplanting ICM method. Dissertation, Beijing University of Technology.
go back to reference Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):197–224 Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):197–224
Metadata
Title
TIMP method for topology optimization of plate structures with displacement constraints under multiple loading cases
Authors
Guilian Yi
Yunkang Sui
Publication date
25-02-2016
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2016
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1314-0

Other articles of this Issue 6/2016

Structural and Multidisciplinary Optimization 6/2016 Go to the issue

Premium Partners