Skip to main content
Top

2016 | OriginalPaper | Chapter

23. Top-Down Nanofabrication

Author : Vinod Kumar Khanna

Published in: Integrated Nanoelectronics

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Starting from a bulk material, the top-down fabrication process progresses to machine, modify, and shape it into the desired shape and size. In integrated circuit manufacturing, one takes a silicon wafer and carves patterns of specified dimensions by a series of lithographic steps through aligned masking levels, performs operations such as wet and dry chemical etching, ion implantation, diffusion, oxidation, metallisation and many others until the desired device/circuit has been obtained. The key to top-down nanofabrication has been the art of lithography which has been relentlessly improved to create patterns of smaller geometries with higher resolution. The illumination/irradiation source in lithography has been changed from an intense beam of deep UV photons to extreme UV photons, and focussed electrons. Due to its extremely short wavelength, the electron beam offers a very high diffraction-limited resolution but is a comparatively slow process. Another approach followed is to make patterns by mechanical pressure, e.g., by stamping and printing using designed templates. In block copolymer lithography, the directed self-assembly of block copolymers is synergistically integrated with common lithographic techniques for practical utilization by semiconductor industry. Scanning probe lithography can manipulate individual molecules but is a low throughput technique. The vast gamut of nanolithographic tools available to a semiconductor process engineer can be leveraged for fabrication of nanostructures of wide-ranging complexities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rothschild M, Bloomstein TM, Fedynyshyn TH et al (2003) Recent trends in optical lithography. Lincoln Laboratory J 14(2):221–236 Rothschild M, Bloomstein TM, Fedynyshyn TH et al (2003) Recent trends in optical lithography. Lincoln Laboratory J 14(2):221–236
2.
go back to reference French RH, Tran HV (2009) Immersion lithography: photomask and wafer-level materials. Annu Rev Mater Res 39:93–126CrossRef French RH, Tran HV (2009) Immersion lithography: photomask and wafer-level materials. Annu Rev Mater Res 39:93–126CrossRef
4.
go back to reference Pease RFW (1981) Electron beam lithography. Contemporary Phys 22(3):265–290CrossRef Pease RFW (1981) Electron beam lithography. Contemporary Phys 22(3):265–290CrossRef
5.
go back to reference Mohammad MA, Muhammad M, Dew SK et al (2012) 2:Fundamentals of electron beam exposure and development. In: Stepanova M, Dew S (eds) Nanofabrication: techniques and principles © Springer-Verlag/Wien, pp 11–41 Mohammad MA, Muhammad M, Dew SK et al (2012) 2:Fundamentals of electron beam exposure and development. In: Stepanova M, Dew S (eds) Nanofabrication: techniques and principles © Springer-Verlag/Wien, pp 11–41
6.
go back to reference Tseng AA, Chen K, Chen CD et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26(2):141–149CrossRef Tseng AA, Chen K, Chen CD et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26(2):141–149CrossRef
8.
go back to reference Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502CrossRef Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502CrossRef
9.
go back to reference Rogers JA. Nuzzo RG (2005) Recent progress in soft lithography. Materials Today February 50–56 Rogers JA. Nuzzo RG (2005) Recent progress in soft lithography. Materials Today February 50–56
10.
go back to reference Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRef Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRef
12.
go back to reference Jeong S-J, Kim JY, Kim BH et al (2013) Directed self-assembly of block copolymers for next generation nanolithography. Mater Today 16(12):468–476CrossRef Jeong S-J, Kim JY, Kim BH et al (2013) Directed self-assembly of block copolymers for next generation nanolithography. Mater Today 16(12):468–476CrossRef
13.
go back to reference Nunns A, Gwyther J, Manners I (2013) Inorganic block copolymer lithography. Polymer 54:1269–1284CrossRef Nunns A, Gwyther J, Manners I (2013) Inorganic block copolymer lithography. Polymer 54:1269–1284CrossRef
14.
go back to reference Krämer S, Fuierer RR, Gorman CB et al (2003) Scanning probe lithography using self-assembled monolayers. Chem Rev 103(11):4367–4418CrossRef Krämer S, Fuierer RR, Gorman CB et al (2003) Scanning probe lithography using self-assembled monolayers. Chem Rev 103(11):4367–4418CrossRef
Metadata
Title
Top-Down Nanofabrication
Author
Vinod Kumar Khanna
Copyright Year
2016
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-3625-2_23