Skip to main content
Top
Published in: Cognitive Neurodynamics 4/2007

01-12-2007 | Research Article

Topography, independent component analysis and dipole source analysis of movement related potentials

Authors: Susan Pockett, Simon Whalen, Alexander V. H. McPhail, Walter J. Freeman

Published in: Cognitive Neurodynamics | Issue 4/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study was to test, in single subjects, the hypothesis that the signs of voluntary movement-related neural activity would first appear in the prefrontal region, then move to both the medial frontal and posterior parietal regions, progress to the medial primary motor area, lateralize to the contralateral primary motor area and finally involve the cerebellum (where feedback-initiated error signals are computed). Six subjects performed voluntary finger movements while DC coupled EEG was recorded from 64 scalp electrodes. Event-related potentials (ERPs) averaged on the movements were analysed both before and after independent component analysis (ICA) combined with dipole source analysis (DSA) of the independent components. Both a simple topographic analysis of undecomposed ERPs and the ICA/DSA analysis suggested that the original hypothesis was inadequate. The major departure from its predictions was that, while activity over many brain regions did appear at the expected times, it also appeared at unexpected times. Overall, the results suggest that the neuroscientific ‘standard model’, in which neural activity occurs sequentially in a series of discrete local areas each specialized for a particular function, may reflect the true situation less well than models in which large areas of brain shift simultaneously into and out of common activity states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Such tasks are also shown to involve additional prefrontal areas (BA8, BA44), the anterior cingulate (BA32), Broca’s area (BA44), the parietal cortex (BA40, BA7), the superior temporal gyrus (BA 22/42) the insula, and assorted motor, somatosensory and visual areas (BA1,2,3,4,6,17,18,19). However these observations are usually downplayed over in the interests of presenting a simple story, that working memory occurs in the dorsolateral prefrontal cortex (BA46/9).
 
2
Inclusion of epochs with very long response times was tried, but trouble was experienced fitting dipoles to many of the resulting ICA components. This may have been because the assumption of stationarity underlying ICA was unacceptably violated in very long data segments, resulting in ICA components that could not be not associated with any single dipole. The 1.5 s response time cut-off was chosen as an acceptable compromise between maximization of stationarity (which would presumably be more closely approximated in shorter data segments) and truncation of the BP signal. Use of this constraint resulted in many more successful dipole fits, while preserving what was apparently the full length of the BP.
 
3
An alternative description of these operations which may be more readily acceptable to ICA afficionados is as follows. The back-projected time series of each independent component was computed by taking the outer product of the column vector of the mixing matrix with the corresponding row vector of the activation matrix. This gave a matrix time-series of rank 1 for each of the 64 independent components.
 
4
Strictly speaking, the presence of a waveform only at prefrontal leads is at best suggestive of the presence of neural activity in the prefrontal cortex.
 
5
‘Scale-free’ in this context means that the distribution of the parameter under study obeys a power law: i.e., most of the observations fall into the smallest bins of a histogram, with a few instances of very large observations. The distributions in log-log coordinates show a linear relation described as 1/fa, where the exponent, a, designates the slope. This means that there is no peak in the distribution to provide a characteristic ‘scale’.
 
6
Small-world topologies are a subset of scale-free topologies which feature dense local connections between neighboring nodes in the network, but at the same time a short path length between pairs of distant nodes due to the existence of a few long-range connections. Such topologies offer obvious possibilities with regard to global processing.
 
Literature
go back to reference Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220PubMedCrossRef Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220PubMedCrossRef
go back to reference Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384PubMedCrossRef Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384PubMedCrossRef
go back to reference Bassett DS, Meyer-Lindenberg A, Achard S et al (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523PubMedCrossRef Bassett DS, Meyer-Lindenberg A, Achard S et al (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523PubMedCrossRef
go back to reference Bechara A, Damasio H, Tranel D, Anderson S (1998) Dissociation of working memory from decision making within human prefrontal cortex. J Neurosci 18:428–437PubMed Bechara A, Damasio H, Tranel D, Anderson S (1998) Dissociation of working memory from decision making within human prefrontal cortex. J Neurosci 18:428–437PubMed
go back to reference Bell AJ, Sejnowsky TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comp 7:1129–1159 Bell AJ, Sejnowsky TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comp 7:1129–1159
go back to reference Binkofski F, Dohle C, Posse S et al (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMed Binkofski F, Dohle C, Posse S et al (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMed
go back to reference Cohen JD, Perlstein WM, Braver TS et al (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608PubMedCrossRef Cohen JD, Perlstein WM, Braver TS et al (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608PubMedCrossRef
go back to reference Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cort 6:39–49CrossRef Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cort 6:39–49CrossRef
go back to reference Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611PubMedCrossRef Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611PubMedCrossRef
go back to reference Cui RQ, Huter D, Lang W, Deecke L (1999) Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. Neuroimage 9:124–134PubMedCrossRef Cui RQ, Huter D, Lang W, Deecke L (1999) Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. Neuroimage 9:124–134PubMedCrossRef
go back to reference Cui RQ, Huter D, Egkher A et al (2000) High-resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement. Exp Brain Res 134:49–57PubMedCrossRef Cui RQ, Huter D, Egkher A et al (2000) High-resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement. Exp Brain Res 134:49–57PubMedCrossRef
go back to reference Cunnington R, Windischberger C, Deecke L, Moser E (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15:373–385PubMedCrossRef Cunnington R, Windischberger C, Deecke L, Moser E (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15:373–385PubMedCrossRef
go back to reference D’Esposito M, Detre JA, Alsop DC et al (1995) The neural basis of central execution systems of working memory. Nature 378:279–281PubMedCrossRef D’Esposito M, Detre JA, Alsop DC et al (1995) The neural basis of central execution systems of working memory. Nature 378:279–281PubMedCrossRef
go back to reference Damasio AR, Tranel D, Damasio H (1991) Somatic markers and the guidance of behavior: theory and preliminary testing. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford UP, New York, pp 217–229 Damasio AR, Tranel D, Damasio H (1991) Somatic markers and the guidance of behavior: theory and preliminary testing. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford UP, New York, pp 217–229
go back to reference Deecke L, Scheid P, Kornhuber HH (1969) Distribution of readiness potential, premotion positivity and motor potentials of the human cerebral cortex preceeding voluntary finger movements. Exp Brain Res 7:158–168PubMedCrossRef Deecke L, Scheid P, Kornhuber HH (1969) Distribution of readiness potential, premotion positivity and motor potentials of the human cerebral cortex preceeding voluntary finger movements. Exp Brain Res 7:158–168PubMedCrossRef
go back to reference Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol Cybernet 23:99–119CrossRef Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol Cybernet 23:99–119CrossRef
go back to reference Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Meth 134:9–21CrossRef Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Meth 134:9–21CrossRef
go back to reference Eskandar EN, Assad JA (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat Neurosci 2:88–93PubMedCrossRef Eskandar EN, Assad JA (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat Neurosci 2:88–93PubMedCrossRef
go back to reference Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophys 115:2089–2107CrossRef Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophys 115:2089–2107CrossRef
go back to reference Freeman WJ (2007) Scale-free neocortical dynamics. Scholarpedia pp 8780 Freeman WJ (2007) Scale-free neocortical dynamics. Scholarpedia pp 8780
go back to reference Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception. Part 4. Multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13:2857–2866CrossRef Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception. Part 4. Multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13:2857–2866CrossRef
go back to reference Freeman WJ, Burke BC, Holmes MD (2003a) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Map 19(4):248–272CrossRef Freeman WJ, Burke BC, Holmes MD (2003a) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Map 19(4):248–272CrossRef
go back to reference Freeman WJ, Gaál G, Jornten R (2003b) A neurobiological theory of meaning in perception. Part 3. Multiple cortical areas synchronize without loss of local autonomy. Int J Bifurc Chaos 13:2845–2856CrossRef Freeman WJ, Gaál G, Jornten R (2003b) A neurobiological theory of meaning in perception. Part 3. Multiple cortical areas synchronize without loss of local autonomy. Int J Bifurc Chaos 13:2845–2856CrossRef
go back to reference Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13:2867–2887CrossRef Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13:2867–2887CrossRef
go back to reference Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Methods 95:111–121PubMedCrossRef Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Methods 95:111–121PubMedCrossRef
go back to reference Goldman-Rakic PS (1992) Working memory and the mind. Sci Am 267(3):111–117CrossRef Goldman-Rakic PS (1992) Working memory and the mind. Sci Am 267(3):111–117CrossRef
go back to reference Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Phil Trans Roy Soc B 273:503–511 Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Phil Trans Roy Soc B 273:503–511
go back to reference Jahanshahi M, Frith CD (1998) Willed action and its impairments. Cogn Neuropsychol 15(6–8):483–533CrossRef Jahanshahi M, Frith CD (1998) Willed action and its impairments. Cogn Neuropsychol 15(6–8):483–533CrossRef
go back to reference Jensen HJ (1998) Self-organized criticality: emergent behavior in physical and biological systems. Cambridge University Press, Cambridge Jensen HJ (1998) Self-organized criticality: emergent behavior in physical and biological systems. Cambridge University Press, Cambridge
go back to reference Jonides J, Smith EE, Koeppe RA et al (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRef Jonides J, Smith EE, Koeppe RA et al (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRef
go back to reference Kalaska JF (1996) Parietal cortex area 5 and visuomotor behavior. Can J Physiol Pharmacol 74:483–498PubMedCrossRef Kalaska JF (1996) Parietal cortex area 5 and visuomotor behavior. Can J Physiol Pharmacol 74:483–498PubMedCrossRef
go back to reference Kornhuber HH, Deecke L (1964) Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. Pflügers Arch ges Physiol 281:52 Kornhuber HH, Deecke L (1964) Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. Pflügers Arch ges Physiol 281:52
go back to reference McCarthy G, Blamire AM, Puce A et al (1994) Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci 91:8690–8694PubMedCrossRef McCarthy G, Blamire AM, Puce A et al (1994) Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci 91:8690–8694PubMedCrossRef
go back to reference Paradiso G, Cunic D, Saint-Cyr JA et al (2004) Involvement of human thalamus in the preparation of self-paced movement. Brain 127:2717–2731PubMedCrossRef Paradiso G, Cunic D, Saint-Cyr JA et al (2004) Involvement of human thalamus in the preparation of self-paced movement. Brain 127:2717–2731PubMedCrossRef
go back to reference Pedersen JR, Johannsen P, Bak CK et al (1998) Origin of human motor readiness field linked to left middle frontal guyrus by MEG and PET. Neuroimage 8:214–220PubMedCrossRef Pedersen JR, Johannsen P, Bak CK et al (1998) Origin of human motor readiness field linked to left middle frontal guyrus by MEG and PET. Neuroimage 8:214–220PubMedCrossRef
go back to reference Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643–674PubMedCrossRef Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643–674PubMedCrossRef
go back to reference Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci 90:873–877PubMedCrossRef Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci 90:873–877PubMedCrossRef
go back to reference Pockett S (2006) The neuroscience of movement. In: Pockett S, Banks WP, Gallagher S (eds) Does consciousness cause behavior? MIT Press, Cambridge Mass Pockett S (2006) The neuroscience of movement. In: Pockett S, Banks WP, Gallagher S (eds) Does consciousness cause behavior? MIT Press, Cambridge Mass
go back to reference Praamstra P, Schmitz F, Freund H-J, Schnitzler A (1999) Magneto-encephalographic correlates of the lateralized readiness potential. Cogn Brain Res 8:77–85CrossRef Praamstra P, Schmitz F, Freund H-J, Schnitzler A (1999) Magneto-encephalographic correlates of the lateralized readiness potential. Cogn Brain Res 8:77–85CrossRef
go back to reference Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P (2001) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 65:041903CrossRef Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P (2001) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 65:041903CrossRef
go back to reference Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMedCrossRef Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMedCrossRef
go back to reference Sakata H, Taira M, Kusunoki M et al (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357PubMedCrossRef Sakata H, Taira M, Kusunoki M et al (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357PubMedCrossRef
go back to reference Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr clin Neurophysiol 49:213–226PubMedCrossRef Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr clin Neurophysiol 49:213–226PubMedCrossRef
go back to reference Singh J, Knight RT (1990) Frontal lobe contribution to voluntary movements in humans. Brain Res 531:45–54PubMedCrossRef Singh J, Knight RT (1990) Frontal lobe contribution to voluntary movements in humans. Brain Res 531:45–54PubMedCrossRef
go back to reference Smith EE, Jonides J, Koeppe RA et al (1995) Spatial versus object working memory: PET investigations. J Cog Neurosci 7:337–356CrossRef Smith EE, Jonides J, Koeppe RA et al (1995) Spatial versus object working memory: PET investigations. J Cog Neurosci 7:337–356CrossRef
go back to reference Toro C, Matsumoto J, Deuschl G et al (1993) Source analysis of scalp-recorded movement-related electrical potentials. Electroencephalogr clin Neurophysiol 86:167–175PubMedCrossRef Toro C, Matsumoto J, Deuschl G et al (1993) Source analysis of scalp-recorded movement-related electrical potentials. Electroencephalogr clin Neurophysiol 86:167–175PubMedCrossRef
go back to reference Varela F., Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2:229–239CrossRef Varela F., Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2:229–239CrossRef
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedCrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedCrossRef
Metadata
Title
Topography, independent component analysis and dipole source analysis of movement related potentials
Authors
Susan Pockett
Simon Whalen
Alexander V. H. McPhail
Walter J. Freeman
Publication date
01-12-2007
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 4/2007
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-007-9024-y

Other articles of this Issue 4/2007

Cognitive Neurodynamics 4/2007 Go to the issue