Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2010

01-03-2010

Topological Characteristics of Two-Dimensional Grain Growth-Simulation and Analysis

Authors: Alan P. Sprague, Burton R. Patterson, Suresh Grandhi

Published in: Metallurgical and Materials Transactions A | Issue 3/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A two-dimensional (2-D) grain growth simulation, using a curvature-driven vertex model applied to an initially Monte Carlo (MC)–generated microstructure, has been developed for analysis of the topological characteristics of the process, including the rates of different topological events and the effect of these event frequencies on the evolving grain structure. Findings include a constant ratio of the number fraction of disappearing grains to the area fraction swept by the grain boundary of 4/3; constant fractions of boundary sweeping due to grain disappearance (~2 pct), boundary-switching events (~8 pct), and simple boundary motion (~90 pct); and a constant ratio of 1.34 boundary-switching events per grain disappearance. An affinity term was developed to describe the tendency of grains of different edge classes to contact each other or to be involved in different topological events, relative to random behavior. The highest and lowest edge classes, 3 and 12, respectively, exhibited the highest affinity for mutual contact, a 16 times random occurrence, but an affinity of ~0 for contact with themselves. Intermediate edge classes showed an affinity of ~1, random contact, with other classes or with themselves. Few-edged grains showed ~0 affinity for contacting a disappearing trigon or gaining an edge in an edge-switching event, but had a high affinity, approaching 6, for losing an edge in a switching event. Many-edged grains showed the opposite trends and intermediate edge classes showed a random or less tendency for participation in any topological event. It was shown statistically that the growth rate of individual grains is controlled solely by the edge class, with essentially no direct effect from the grain size. The evolution of the grain area and edge class distributions were monitored throughout the transition from transient to steady-state grain growth, with a steady state achieved after loss of approximately 1/3 of the initial grains. The steady-state values of the coefficients of variation (CVs) of the edge class and grain area distributions were ~0.2 and 0.7, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference C.S. Smith: Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 65–113. C.S. Smith: Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 65–113.
3.
go back to reference W.M. Williams and C.S. Smith: Trans. AIME, 1952, vol. 194, pp. 755–65. W.M. Williams and C.S. Smith: Trans. AIME, 1952, vol. 194, pp. 755–65.
4.
go back to reference J.H. Steele, Jr.: Microstructural Science, Elsevier, New York, 1974, vol. 1, pp. 283–91. J.H. Steele, Jr.: Microstructural Science, Elsevier, New York, 1974, vol. 1, pp. 283–91.
5.
go back to reference F.N. Rhines, K.R. Craig, and D.A. Rousse: Metall. Trans. A, 1976, vol. 7A, pp. 1729–34.ADS F.N. Rhines, K.R. Craig, and D.A. Rousse: Metall. Trans. A, 1976, vol. 7A, pp. 1729–34.ADS
6.
go back to reference F.N. Rhines and B.R. Patterson: Metall. Trans. A, 1982, vol. 13A, pp. 985–93.ADS F.N. Rhines and B.R. Patterson: Metall. Trans. A, 1982, vol. 13A, pp. 985–93.ADS
7.
go back to reference B.R. Patterson and V.D. Parkhe: Acta Stereologica, 1987, vol. 6, pp. 407–12. B.R. Patterson and V.D. Parkhe: Acta Stereologica, 1987, vol. 6, pp. 407–12.
8.
go back to reference K. Fuchizaki, T. Kusaba, and K. Kawasaki: Philos. Mag. B, 1995, vol. 71, pp. 333–57. K. Fuchizaki, T. Kusaba, and K. Kawasaki: Philos. Mag. B, 1995, vol. 71, pp. 333–57.
9.
go back to reference C.E. Krill and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3057–73. C.E. Krill and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3057–73.
11.
go back to reference F. Wakai, Y. Shinoda, S. Ishihara, and A. Dominguez-Rodriguez: J. Mater. Res., 2001, vol. 16, pp. 2136–42.CrossRefADS F. Wakai, Y. Shinoda, S. Ishihara, and A. Dominguez-Rodriguez: J. Mater. Res., 2001, vol. 16, pp. 2136–42.CrossRefADS
13.
go back to reference D. Juul Jensen, E.M. Lauridsen, L. Margulies, H.F. Poulsen, S. Schmidt, H.O. Sorensen, and G.B.M. Vaughan: Mater. Today, 2006, vol. 9, pp. 18–25.CrossRef D. Juul Jensen, E.M. Lauridsen, L. Margulies, H.F. Poulsen, S. Schmidt, H.O. Sorensen, and G.B.M. Vaughan: Mater. Today, 2006, vol. 9, pp. 18–25.CrossRef
14.
go back to reference H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004. H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004.
15.
go back to reference V.E. Fradkov, M.E. Glicksman, and K. Rajan: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 183–94. V.E. Fradkov, M.E. Glicksman, and K. Rajan: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 183–94.
16.
go back to reference R.T. DeHoff and F.P. Cone: in Microstructural Science, I. LeMay, P.A. Fallon, and J.L. McCall, eds., Elsevier, New York, 1979, vol. 7, pp. 425–32. R.T. DeHoff and F.P. Cone: in Microstructural Science, I. LeMay, P.A. Fallon, and J.L. McCall, eds., Elsevier, New York, 1979, vol. 7, pp. 425–32.
17.
go back to reference M.A. Palmer, V.E. Fradkov, M.E. Glicksman, and K. Rajan: Scripta Mater., 2003, vol. 48, pp. 1173–78.CrossRef M.A. Palmer, V.E. Fradkov, M.E. Glicksman, and K. Rajan: Scripta Mater., 2003, vol. 48, pp. 1173–78.CrossRef
18.
go back to reference K. Rajan, M. Glicksman, V. Fradkov, M. Palmer, and J. Sweet: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 217–25. K. Rajan, M. Glicksman, V. Fradkov, M. Palmer, and J. Sweet: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 217–25.
19.
go back to reference M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.CrossRef M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.CrossRef
20.
go back to reference D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.CrossRef D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.CrossRef
21.
go back to reference K. Marthinsen, N. Ryum, and O. Hunderi: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 71–80. K. Marthinsen, N. Ryum, and O. Hunderi: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 71–80.
22.
go back to reference V. Tikare, E.A. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363–71.CrossRef V. Tikare, E.A. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363–71.CrossRef
23.
go back to reference D. Weygand, Y. Brechet, and J. Lepinoux: Acta Mater., 1998, vol. 46, pp. 6559–64.CrossRef D. Weygand, Y. Brechet, and J. Lepinoux: Acta Mater., 1998, vol. 46, pp. 6559–64.CrossRef
24.
go back to reference S.P. Marsh, A. Masamura, and C.S. Pande: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 339–46. S.P. Marsh, A. Masamura, and C.S. Pande: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 339–46.
25.
go back to reference H.J. Frost, C.V. Thompson, and D.T. Walton: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 271–80. H.J. Frost, C.V. Thompson, and D.T. Walton: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 271–80.
26.
go back to reference T.O. Saetre and N. Ryum: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, p. 281–94. T.O. Saetre and N. Ryum: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, p. 281–94.
27.
go back to reference F. Wakai, N. Enomoto, and H. Ogawa: Acta Mater., 2000, vol. 48, pp. 1297–1311.CrossRef F. Wakai, N. Enomoto, and H. Ogawa: Acta Mater., 2000, vol. 48, pp. 1297–1311.CrossRef
28.
go back to reference C. Maurice and F.J. Humphries: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 81–90. C. Maurice and F.J. Humphries: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 81–90.
29.
go back to reference C. Maurice: in Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds. Springer-Verlag, Berlin, 2001, pp. 123–34. C. Maurice: in Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds. Springer-Verlag, Berlin, 2001, pp. 123–34.
30.
go back to reference C.C. Battaile: Sandia National Laboratory, Albuquerque, NM, unpublished research, 2007. C.C. Battaile: Sandia National Laboratory, Albuquerque, NM, unpublished research, 2007.
31.
go back to reference J. von Neumann: in Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 108–10. J. von Neumann: in Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 108–10.
32.
go back to reference C.C. Battaile and E.A. Holm: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 119–24. C.C. Battaile and E.A. Holm: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 119–24.
33.
go back to reference R.D. Doherty: Metall. Trans. A, 1975, vol. 6A, pp. 588–91.ADS R.D. Doherty: Metall. Trans. A, 1975, vol. 6A, pp. 588–91.ADS
37.
go back to reference A.P. Sprague and B.R. Patterson: University of Alabama at Birmingham, Birmingham, AL, unpublished research, 2007. A.P. Sprague and B.R. Patterson: University of Alabama at Birmingham, Birmingham, AL, unpublished research, 2007.
Metadata
Title
Topological Characteristics of Two-Dimensional Grain Growth-Simulation and Analysis
Authors
Alan P. Sprague
Burton R. Patterson
Suresh Grandhi
Publication date
01-03-2010
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2010
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-009-0139-0

Other articles of this Issue 3/2010

Metallurgical and Materials Transactions A 3/2010 Go to the issue

Premium Partners