Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2010

01.03.2010

Topological Characteristics of Two-Dimensional Grain Growth-Simulation and Analysis

verfasst von: Alan P. Sprague, Burton R. Patterson, Suresh Grandhi

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-dimensional (2-D) grain growth simulation, using a curvature-driven vertex model applied to an initially Monte Carlo (MC)–generated microstructure, has been developed for analysis of the topological characteristics of the process, including the rates of different topological events and the effect of these event frequencies on the evolving grain structure. Findings include a constant ratio of the number fraction of disappearing grains to the area fraction swept by the grain boundary of 4/3; constant fractions of boundary sweeping due to grain disappearance (~2 pct), boundary-switching events (~8 pct), and simple boundary motion (~90 pct); and a constant ratio of 1.34 boundary-switching events per grain disappearance. An affinity term was developed to describe the tendency of grains of different edge classes to contact each other or to be involved in different topological events, relative to random behavior. The highest and lowest edge classes, 3 and 12, respectively, exhibited the highest affinity for mutual contact, a 16 times random occurrence, but an affinity of ~0 for contact with themselves. Intermediate edge classes showed an affinity of ~1, random contact, with other classes or with themselves. Few-edged grains showed ~0 affinity for contacting a disappearing trigon or gaining an edge in an edge-switching event, but had a high affinity, approaching 6, for losing an edge in a switching event. Many-edged grains showed the opposite trends and intermediate edge classes showed a random or less tendency for participation in any topological event. It was shown statistically that the growth rate of individual grains is controlled solely by the edge class, with essentially no direct effect from the grain size. The evolution of the grain area and edge class distributions were monitored throughout the transition from transient to steady-state grain growth, with a steady state achieved after loss of approximately 1/3 of the initial grains. The steady-state values of the coefficients of variation (CVs) of the edge class and grain area distributions were ~0.2 and 0.7, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.N. Rhines and K.R. Craig: Metall. Trans., 1974, vol. 5, pp. 413–25.CrossRef F.N. Rhines and K.R. Craig: Metall. Trans., 1974, vol. 5, pp. 413–25.CrossRef
2.
Zurück zum Zitat C.S. Smith: Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 65–113. C.S. Smith: Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 65–113.
3.
Zurück zum Zitat W.M. Williams and C.S. Smith: Trans. AIME, 1952, vol. 194, pp. 755–65. W.M. Williams and C.S. Smith: Trans. AIME, 1952, vol. 194, pp. 755–65.
4.
Zurück zum Zitat J.H. Steele, Jr.: Microstructural Science, Elsevier, New York, 1974, vol. 1, pp. 283–91. J.H. Steele, Jr.: Microstructural Science, Elsevier, New York, 1974, vol. 1, pp. 283–91.
5.
Zurück zum Zitat F.N. Rhines, K.R. Craig, and D.A. Rousse: Metall. Trans. A, 1976, vol. 7A, pp. 1729–34.ADS F.N. Rhines, K.R. Craig, and D.A. Rousse: Metall. Trans. A, 1976, vol. 7A, pp. 1729–34.ADS
6.
Zurück zum Zitat F.N. Rhines and B.R. Patterson: Metall. Trans. A, 1982, vol. 13A, pp. 985–93.ADS F.N. Rhines and B.R. Patterson: Metall. Trans. A, 1982, vol. 13A, pp. 985–93.ADS
7.
Zurück zum Zitat B.R. Patterson and V.D. Parkhe: Acta Stereologica, 1987, vol. 6, pp. 407–12. B.R. Patterson and V.D. Parkhe: Acta Stereologica, 1987, vol. 6, pp. 407–12.
8.
Zurück zum Zitat K. Fuchizaki, T. Kusaba, and K. Kawasaki: Philos. Mag. B, 1995, vol. 71, pp. 333–57. K. Fuchizaki, T. Kusaba, and K. Kawasaki: Philos. Mag. B, 1995, vol. 71, pp. 333–57.
9.
Zurück zum Zitat C.E. Krill and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3057–73. C.E. Krill and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3057–73.
11.
Zurück zum Zitat F. Wakai, Y. Shinoda, S. Ishihara, and A. Dominguez-Rodriguez: J. Mater. Res., 2001, vol. 16, pp. 2136–42.CrossRefADS F. Wakai, Y. Shinoda, S. Ishihara, and A. Dominguez-Rodriguez: J. Mater. Res., 2001, vol. 16, pp. 2136–42.CrossRefADS
13.
Zurück zum Zitat D. Juul Jensen, E.M. Lauridsen, L. Margulies, H.F. Poulsen, S. Schmidt, H.O. Sorensen, and G.B.M. Vaughan: Mater. Today, 2006, vol. 9, pp. 18–25.CrossRef D. Juul Jensen, E.M. Lauridsen, L. Margulies, H.F. Poulsen, S. Schmidt, H.O. Sorensen, and G.B.M. Vaughan: Mater. Today, 2006, vol. 9, pp. 18–25.CrossRef
14.
Zurück zum Zitat H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004. H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004.
15.
Zurück zum Zitat V.E. Fradkov, M.E. Glicksman, and K. Rajan: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 183–94. V.E. Fradkov, M.E. Glicksman, and K. Rajan: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 183–94.
16.
Zurück zum Zitat R.T. DeHoff and F.P. Cone: in Microstructural Science, I. LeMay, P.A. Fallon, and J.L. McCall, eds., Elsevier, New York, 1979, vol. 7, pp. 425–32. R.T. DeHoff and F.P. Cone: in Microstructural Science, I. LeMay, P.A. Fallon, and J.L. McCall, eds., Elsevier, New York, 1979, vol. 7, pp. 425–32.
17.
Zurück zum Zitat M.A. Palmer, V.E. Fradkov, M.E. Glicksman, and K. Rajan: Scripta Mater., 2003, vol. 48, pp. 1173–78.CrossRef M.A. Palmer, V.E. Fradkov, M.E. Glicksman, and K. Rajan: Scripta Mater., 2003, vol. 48, pp. 1173–78.CrossRef
18.
Zurück zum Zitat K. Rajan, M. Glicksman, V. Fradkov, M. Palmer, and J. Sweet: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 217–25. K. Rajan, M. Glicksman, V. Fradkov, M. Palmer, and J. Sweet: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 217–25.
19.
Zurück zum Zitat M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.CrossRef M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.CrossRef
20.
Zurück zum Zitat D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.CrossRef D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.CrossRef
21.
Zurück zum Zitat K. Marthinsen, N. Ryum, and O. Hunderi: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 71–80. K. Marthinsen, N. Ryum, and O. Hunderi: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 71–80.
22.
Zurück zum Zitat V. Tikare, E.A. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363–71.CrossRef V. Tikare, E.A. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363–71.CrossRef
23.
Zurück zum Zitat D. Weygand, Y. Brechet, and J. Lepinoux: Acta Mater., 1998, vol. 46, pp. 6559–64.CrossRef D. Weygand, Y. Brechet, and J. Lepinoux: Acta Mater., 1998, vol. 46, pp. 6559–64.CrossRef
24.
Zurück zum Zitat S.P. Marsh, A. Masamura, and C.S. Pande: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 339–46. S.P. Marsh, A. Masamura, and C.S. Pande: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 339–46.
25.
Zurück zum Zitat H.J. Frost, C.V. Thompson, and D.T. Walton: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 271–80. H.J. Frost, C.V. Thompson, and D.T. Walton: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, pp. 271–80.
26.
Zurück zum Zitat T.O. Saetre and N. Ryum: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, p. 281–94. T.O. Saetre and N. Ryum: in Modeling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, PA, 1993, p. 281–94.
27.
Zurück zum Zitat F. Wakai, N. Enomoto, and H. Ogawa: Acta Mater., 2000, vol. 48, pp. 1297–1311.CrossRef F. Wakai, N. Enomoto, and H. Ogawa: Acta Mater., 2000, vol. 48, pp. 1297–1311.CrossRef
28.
Zurück zum Zitat C. Maurice and F.J. Humphries: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 81–90. C. Maurice and F.J. Humphries: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 81–90.
29.
Zurück zum Zitat C. Maurice: in Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds. Springer-Verlag, Berlin, 2001, pp. 123–34. C. Maurice: in Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds. Springer-Verlag, Berlin, 2001, pp. 123–34.
30.
Zurück zum Zitat C.C. Battaile: Sandia National Laboratory, Albuquerque, NM, unpublished research, 2007. C.C. Battaile: Sandia National Laboratory, Albuquerque, NM, unpublished research, 2007.
31.
Zurück zum Zitat J. von Neumann: in Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 108–10. J. von Neumann: in Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 108–10.
32.
Zurück zum Zitat C.C. Battaile and E.A. Holm: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 119–24. C.C. Battaile and E.A. Holm: in Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, and A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 119–24.
33.
Zurück zum Zitat R.D. Doherty: Metall. Trans. A, 1975, vol. 6A, pp. 588–91.ADS R.D. Doherty: Metall. Trans. A, 1975, vol. 6A, pp. 588–91.ADS
37.
Zurück zum Zitat A.P. Sprague and B.R. Patterson: University of Alabama at Birmingham, Birmingham, AL, unpublished research, 2007. A.P. Sprague and B.R. Patterson: University of Alabama at Birmingham, Birmingham, AL, unpublished research, 2007.
Metadaten
Titel
Topological Characteristics of Two-Dimensional Grain Growth-Simulation and Analysis
verfasst von
Alan P. Sprague
Burton R. Patterson
Suresh Grandhi
Publikationsdatum
01.03.2010
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2010
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-009-0139-0

Weitere Artikel der Ausgabe 3/2010

Metallurgical and Materials Transactions A 3/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.